Skip to content

Commit 665b9a9

Browse files
authored
Merge pull request #319 from AtticusZeller/GsplatLoc
add GsplatLoc paper to the database
2 parents 35fd949 + aee0d71 commit 665b9a9

File tree

2 files changed

+62
-31
lines changed

2 files changed

+62
-31
lines changed
30 KB
Loading

awesome_3dgs_papers.yaml

+62-31
Original file line numberDiff line numberDiff line change
@@ -1,34 +1,3 @@
1-
- id: condor2024dsyg
2-
title: 'Don''t Splat your Gaussians: Volumetric Ray-Traced Primitives for
3-
Modeling and Rendering Scattering and Emissive Media'
4-
authors: Jorge Condor, Sebastien Speierer, Lukas Bode, Aljaz Bozic, Simon Green, Piotr Didyk, Adrian Jarabo
5-
year: '2024'
6-
abstract: 'Banking on the popularity of rasterized 3D Gaussian Splatting methods,
7-
we formalize the ray-tracing of volumes composed of kernel mixture models (Gaussian
8-
or otherwise). Our physically-based, path-traced formulation allows us to render and
9-
optimize both scattering and emissive volumes, as well as radiance fields, in an
10-
extremely efficient and compact manner. We also introduce the Epanechnikov kernel
11-
as an efficient alternative for the Gaussian kernel in radiance field rendering,
12-
and showcase the advantages of a ray-traced framework, while maintaining real-time
13-
performance.
14-
'
15-
project_page: https://arcanous98.github.io/projectPages/gaussianVolumes.html
16-
paper: https://arcanous98.github.io/assets/data/papers/Gaussian_tracing_meta_TOG-compressed.pdf
17-
code: https://github.com/facebookresearch/volumetric_primitives
18-
video: null
19-
tags:
20-
- Physics
21-
- Ray Tracing
22-
- Relight
23-
- Rendering
24-
- Project
25-
- Code
26-
- 360 degree
27-
- Antialiasing
28-
- Perspective-correct
29-
thumbnail: assets/thumbnails/condor2024dsyg.jpg
30-
publication_date: '2024-05-24T10:42:05+00:00'
31-
date_source: arxiv
321
- id: lin2025diffsplat
332
title: 'DiffSplat: Repurposing Image Diffusion Models for Scalable Gaussian Splat
343
Generation'
@@ -1706,6 +1675,37 @@
17061675
thumbnail: assets/thumbnails/liu2024maskgaussian.jpg
17071676
publication_date: '2024-12-29T17:12:16+00:00'
17081677
date_source: arxiv
1678+
- id: zeller2024gsplatloc
1679+
title: 'GSplatLoc: Ultra-Precise Camera Localization via 3D Gaussian Splatting'
1680+
authors: Atticus J. Zeller
1681+
year: '2024'
1682+
abstract: 'We present GSplatLoc, a camera localization method that leverages the
1683+
differentiable rendering capabilities of 3D Gaussian splatting for ultra-precise
1684+
pose estimation. By formulating pose estimation as a gradient-based optimization
1685+
problem that minimizes discrepancies between rendered depth maps from a pre-existing
1686+
3D Gaussian scene and observed depth images, GSplatLoc achieves translational
1687+
errors within 0.01 cm and near-zero rotational errors on the Replica dataset -
1688+
significantly outperforming existing methods. Evaluations on the Replica and TUM
1689+
RGB-D datasets demonstrate the method''s robustness in challenging indoor environments
1690+
with complex camera motions. GSplatLoc sets a new benchmark for localization in
1691+
dense mapping, with important implications for applications requiring accurate
1692+
real-time localization, such as robotics and augmented reality.
1693+
1694+
'
1695+
project_page: null
1696+
paper: https://arxiv.org/pdf/2412.20056.pdf
1697+
code: https://github.com/AtticusZeller/GsplatLoc
1698+
video: null
1699+
tags:
1700+
- Code
1701+
- In the Wild
1702+
- Point Cloud
1703+
- Poses
1704+
- Robotics
1705+
- SLAM
1706+
thumbnail: assets/thumbnails/zeller2024gsplatloc.jpg
1707+
publication_date: '2024-12-28T07:14:14+00:00'
1708+
date_source: arxiv
17091709
- id: xu2024das3r
17101710
title: 'DAS3R: Dynamics-Aware Gaussian Splatting for Static Scene Reconstruction'
17111711
authors: Kai Xu, Tze Ho Elden Tse, Jizong Peng, Angela Yao
@@ -6478,6 +6478,37 @@
64786478
- Sparse
64796479
thumbnail: assets/thumbnails/paul2024spsup2sup360.jpg
64806480
publication_date: '2024-05-26T11:01:39+00:00'
6481+
- id: condor2024dsyg
6482+
title: 'Don''t Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling
6483+
and Rendering Scattering and Emissive Media'
6484+
authors: Jorge Condor, Sebastien Speierer, Lukas Bode, Aljaz Bozic, Simon Green,
6485+
Piotr Didyk, Adrian Jarabo
6486+
year: '2024'
6487+
abstract: 'Banking on the popularity of rasterized 3D Gaussian Splatting methods,
6488+
we formalize the ray-tracing of volumes composed of kernel mixture models (Gaussian
6489+
or otherwise). Our physically-based, path-traced formulation allows us to render
6490+
and optimize both scattering and emissive volumes, as well as radiance fields,
6491+
in an extremely efficient and compact manner. We also introduce the Epanechnikov
6492+
kernel as an efficient alternative for the Gaussian kernel in radiance field rendering,
6493+
and showcase the advantages of a ray-traced framework, while maintaining real-time
6494+
performance. '
6495+
project_page: https://arcanous98.github.io/projectPages/gaussianVolumes.html
6496+
paper: https://arcanous98.github.io/assets/data/papers/Gaussian_tracing_meta_TOG-compressed.pdf
6497+
code: https://github.com/facebookresearch/volumetric_primitives
6498+
video: null
6499+
tags:
6500+
- Physics
6501+
- Ray Tracing
6502+
- Relight
6503+
- Rendering
6504+
- Project
6505+
- Code
6506+
- 360 degree
6507+
- Antialiasing
6508+
- Perspective-correct
6509+
thumbnail: assets/thumbnails/condor2024dsyg.jpg
6510+
publication_date: '2024-05-24T10:42:05+00:00'
6511+
date_source: arxiv
64816512
- id: chen2024dogs
64826513
title: 'DOGS: Distributed-Oriented Gaussian Splatting for Large-Scale 3D Reconstruction
64836514
Via Gaussian Consensus'

0 commit comments

Comments
 (0)