-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunclist.pl
1660 lines (1482 loc) · 102 KB
/
funclist.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(
['','cubeRoot','@brief Computes the cube root of an argument.
The function cubeRoot computes \\f$\\sqrt[3]{\\texttt{val}}\\f$. Negative arguments are handled correctly.
NaN and Inf are not handled. The accuracy approaches the maximum possible accuracy for
single-precision data.
@param val A function argument.',0,'float',['float','val','',[]]],
['','fastAtan2','@brief Calculates the angle of a 2D vector in degrees.
The function fastAtan2 calculates the full-range angle of an input 2D vector. The angle is measured
in degrees and varies from 0 to 360 degrees. The accuracy is about 0.3 degrees.
@param x x-coordinate of the vector.
@param y y-coordinate of the vector.',0,'float',['float','y','',[]],['float','x','',[]]],
['RotatedRect','boundingRect','returns 4 vertices of the rectangle
@param pts The points array for storing rectangle vertices. The order is bottomLeft, topLeft, topRight, bottomRight.',1,'Rect'],
['KeyPoint','convert','This method converts vector of keypoints to vector of points or the reverse, where each keypoint is
assigned the same size and the same orientation.
@param keypoints Keypoints obtained from any feature detection algorithm like SIFT/SURF/ORB
@param points2f Array of (x,y) coordinates of each keypoint
@param keypointIndexes Array of indexes of keypoints to be converted to points. (Acts like a mask to
convert only specified keypoints)',0,'void',['vector_KeyPoint','keypoints','',['/C','/Ref']],['vector_Point2f','points2f','',['/O','/Ref']],['vector_int','keypointIndexes','std::vector<int>()',['/C','/Ref']]],
['KeyPoint','convert','@overload
@param points2f Array of (x,y) coordinates of each keypoint
@param keypoints Keypoints obtained from any feature detection algorithm like SIFT/SURF/ORB
@param size keypoint diameter
@param response keypoint detector response on the keypoint (that is, strength of the keypoint)
@param octave pyramid octave in which the keypoint has been detected
@param class_id object id',0,'void',['vector_Point2f','points2f','',['/C','/Ref']],['vector_KeyPoint','keypoints','',['/O','/Ref']],['float','size','1',[]],['float','response','1',[]],['int','octave','0',[]],['int','class_id','-1',[]]],
['KeyPoint','overlap','This method computes overlap for pair of keypoints. Overlap is the ratio between area of keypoint
regions\' intersection and area of keypoint regions\' union (considering keypoint region as circle).
If they don\'t overlap, we get zero. If they coincide at same location with same size, we get 1.
@param kp1 First keypoint
@param kp2 Second keypoint',0,'float',['KeyPoint','kp1','',['/C','/Ref']],['KeyPoint','kp2','',['/C','/Ref']]],
['','borderInterpolate','@brief Computes the source location of an extrapolated pixel.
The function computes and returns the coordinate of a donor pixel corresponding to the specified
extrapolated pixel when using the specified extrapolation border mode. For example, if you use
cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and
want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it
looks like:
@code{.cpp}
float val = img.at<float>(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101),
borderInterpolate(-5, img.cols, cv::BORDER_WRAP));
@endcode
Normally, the function is not called directly. It is used inside filtering functions and also in
copyMakeBorder.
@param p 0-based coordinate of the extrapolated pixel along one of the axes, likely \\<0 or \\>= len
@param len Length of the array along the corresponding axis.
@param borderType Border type, one of the #BorderTypes, except for #BORDER_TRANSPARENT and
#BORDER_ISOLATED . When borderType==#BORDER_CONSTANT , the function always returns -1, regardless
of p and len.
@sa copyMakeBorder',0,'int',['int','p','',[]],['int','len','',[]],['int','borderType','',[]]],
['','copyMakeBorder','@brief Forms a border around an image.
The function copies the source image into the middle of the destination image. The areas to the
left, to the right, above and below the copied source image will be filled with extrapolated
pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but
what other more complex functions, including your own, may do to simplify image boundary handling.
The function supports the mode when src is already in the middle of dst . In this case, the
function does not copy src itself but simply constructs the border, for example:
@code{.cpp}
// let border be the same in all directions
int border=2;
// constructs a larger image to fit both the image and the border
Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
// select the middle part of it w/o copying data
Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
// convert image from RGB to grayscale
cvtColor(rgb, gray, COLOR_RGB2GRAY);
// form a border in-place
copyMakeBorder(gray, gray_buf, border, border,
border, border, BORDER_REPLICATE);
// now do some custom filtering ...
...
@endcode
@note When the source image is a part (ROI) of a bigger image, the function will try to use the
pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as
if src was not a ROI, use borderType | #BORDER_ISOLATED.
@param src Source image.
@param dst Destination image of the same type as src and the size Size(src.cols+left+right,
src.rows+top+bottom) .
@param top the top pixels
@param bottom the bottom pixels
@param left the left pixels
@param right Parameter specifying how many pixels in each direction from the source image rectangle
to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs
to be built.
@param borderType Border type. See borderInterpolate for details.
@param value Border value if borderType==BORDER_CONSTANT .
@sa borderInterpolate',0,'void',['Mat','src','',[]],['Mat','dst','',['/O']],['int','top','',[]],['int','bottom','',[]],['int','left','',[]],['int','right','',[]],['int','borderType','',[]],['Scalar','value','Scalar()',['/C','/Ref']]],
['','add','@brief Calculates the per-element sum of two arrays or an array and a scalar.
The function add calculates:
- Sum of two arrays when both input arrays have the same size and the same number of channels:
\\f[\\texttt{dst}(I) = \\texttt{saturate} ( \\texttt{src1}(I) + \\texttt{src2}(I)) \\quad \\texttt{if mask}(I) \\ne0\\f]
- Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of
elements as `src1.channels()`:
\\f[\\texttt{dst}(I) = \\texttt{saturate} ( \\texttt{src1}(I) + \\texttt{src2} ) \\quad \\texttt{if mask}(I) \\ne0\\f]
- Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of
elements as `src2.channels()`:
\\f[\\texttt{dst}(I) = \\texttt{saturate} ( \\texttt{src1} + \\texttt{src2}(I) ) \\quad \\texttt{if mask}(I) \\ne0\\f]
where `I` is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.
The first function in the list above can be replaced with matrix expressions:
@code{.cpp}
dst = src1 + src2;
dst += src1; // equivalent to add(dst, src1, dst);
@endcode
The input arrays and the output array can all have the same or different depths. For example, you
can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit
floating-point array. Depth of the output array is determined by the dtype parameter. In the second
and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can
be set to the default -1. In this case, the output array will have the same depth as the input
array, be it src1, src2 or both.
@note Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
@param src1 first input array or a scalar.
@param src2 second input array or a scalar.
@param dst output array that has the same size and number of channels as the input array(s); the
depth is defined by dtype or src1/src2.
@param mask optional operation mask - 8-bit single channel array, that specifies elements of the
output array to be changed.
@param dtype optional depth of the output array (see the discussion below).
@sa subtract, addWeighted, scaleAdd, Mat::convertTo',0,'void',['Mat','src1','',[]],['Mat','src2','',[]],['Mat','dst','',['/O']],['Mat','mask','Mat()',[]],['int','dtype','-1',[]]],
['','subtract','@brief Calculates the per-element difference between two arrays or array and a scalar.
The function subtract calculates:
- Difference between two arrays, when both input arrays have the same size and the same number of
channels:
\\f[\\texttt{dst}(I) = \\texttt{saturate} ( \\texttt{src1}(I) - \\texttt{src2}(I)) \\quad \\texttt{if mask}(I) \\ne0\\f]
- Difference between an array and a scalar, when src2 is constructed from Scalar or has the same
number of elements as `src1.channels()`:
\\f[\\texttt{dst}(I) = \\texttt{saturate} ( \\texttt{src1}(I) - \\texttt{src2} ) \\quad \\texttt{if mask}(I) \\ne0\\f]
- Difference between a scalar and an array, when src1 is constructed from Scalar or has the same
number of elements as `src2.channels()`:
\\f[\\texttt{dst}(I) = \\texttt{saturate} ( \\texttt{src1} - \\texttt{src2}(I) ) \\quad \\texttt{if mask}(I) \\ne0\\f]
- The reverse difference between a scalar and an array in the case of `SubRS`:
\\f[\\texttt{dst}(I) = \\texttt{saturate} ( \\texttt{src2} - \\texttt{src1}(I) ) \\quad \\texttt{if mask}(I) \\ne0\\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.
The first function in the list above can be replaced with matrix expressions:
@code{.cpp}
dst = src1 - src2;
dst -= src1; // equivalent to subtract(dst, src1, dst);
@endcode
The input arrays and the output array can all have the same or different depths. For example, you
can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of
the output array is determined by dtype parameter. In the second and third cases above, as well as
in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this
case the output array will have the same depth as the input array, be it src1, src2 or both.
@note Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
@param src1 first input array or a scalar.
@param src2 second input array or a scalar.
@param dst output array of the same size and the same number of channels as the input array.
@param mask optional operation mask; this is an 8-bit single channel array that specifies elements
of the output array to be changed.
@param dtype optional depth of the output array
@sa add, addWeighted, scaleAdd, Mat::convertTo',0,'void',['Mat','src1','',[]],['Mat','src2','',[]],['Mat','dst','',['/O']],['Mat','mask','Mat()',[]],['int','dtype','-1',[]]],
['','multiply','@brief Calculates the per-element scaled product of two arrays.
The function multiply calculates the per-element product of two arrays:
\\f[\\texttt{dst} (I)= \\texttt{saturate} ( \\texttt{scale} \\cdot \\texttt{src1} (I) \\cdot \\texttt{src2} (I))\\f]
There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul .
For a not-per-element matrix product, see gemm .
@note Saturation is not applied when the output array has the depth
CV_32S. You may even get result of an incorrect sign in the case of
overflow.
@param src1 first input array.
@param src2 second input array of the same size and the same type as src1.
@param dst output array of the same size and type as src1.
@param scale optional scale factor.
@param dtype optional depth of the output array
@sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare,
Mat::convertTo',0,'void',['Mat','src1','',[]],['Mat','src2','',[]],['Mat','dst','',['/O']],['double','scale','1',[]],['int','dtype','-1',[]]],
['','divide','@brief Performs per-element division of two arrays or a scalar by an array.
The function cv::divide divides one array by another:
\\f[\\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\\f]
or a scalar by an array when there is no src1 :
\\f[\\texttt{dst(I) = saturate(scale/src2(I))}\\f]
Different channels of multi-channel arrays are processed independently.
For integer types when src2(I) is zero, dst(I) will also be zero.
@note In case of floating point data there is no special defined behavior for zero src2(I) values.
Regular floating-point division is used.
Expect correct IEEE-754 behaviour for floating-point data (with NaN, Inf result values).
@note Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
@param src1 first input array.
@param src2 second input array of the same size and type as src1.
@param scale scalar factor.
@param dst output array of the same size and type as src2.
@param dtype optional depth of the output array; if -1, dst will have depth src2.depth(), but in
case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().
@sa multiply, add, subtract',0,'void',['Mat','src1','',[]],['Mat','src2','',[]],['Mat','dst','',['/O']],['double','scale','1',[]],['int','dtype','-1',[]]],
['','divide','@overload',0,'void',['double','scale','',[]],['Mat','src2','',[]],['Mat','dst','',['/O']],['int','dtype','-1',[]]],
['','scaleAdd','@brief Calculates the sum of a scaled array and another array.
The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY
or SAXPY in [BLAS](http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It calculates
the sum of a scaled array and another array:
\\f[\\texttt{dst} (I)= \\texttt{scale} \\cdot \\texttt{src1} (I) + \\texttt{src2} (I)\\f]
The function can also be emulated with a matrix expression, for example:
@code{.cpp}
Mat A(3, 3, CV_64F);
...
A.row(0) = A.row(1)*2 + A.row(2);
@endcode
@param src1 first input array.
@param alpha scale factor for the first array.
@param src2 second input array of the same size and type as src1.
@param dst output array of the same size and type as src1.
@sa add, addWeighted, subtract, Mat::dot, Mat::convertTo',0,'void',['Mat','src1','',[]],['double','alpha','',[]],['Mat','src2','',[]],['Mat','dst','',['/O']]],
['','addWeighted','@brief Calculates the weighted sum of two arrays.
The function addWeighted calculates the weighted sum of two arrays as follows:
\\f[\\texttt{dst} (I)= \\texttt{saturate} ( \\texttt{src1} (I)* \\texttt{alpha} + \\texttt{src2} (I)* \\texttt{beta} + \\texttt{gamma} )\\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.
The function can be replaced with a matrix expression:
@code{.cpp}
dst = src1*alpha + src2*beta + gamma;
@endcode
@note Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
@param src1 first input array.
@param alpha weight of the first array elements.
@param src2 second input array of the same size and channel number as src1.
@param beta weight of the second array elements.
@param gamma scalar added to each sum.
@param dst output array that has the same size and number of channels as the input arrays.
@param dtype optional depth of the output array; when both input arrays have the same depth, dtype
can be set to -1, which will be equivalent to src1.depth().
@sa add, subtract, scaleAdd, Mat::convertTo',0,'void',['Mat','src1','',[]],['double','alpha','',[]],['Mat','src2','',[]],['double','beta','',[]],['double','gamma','',[]],['Mat','dst','',['/O']],['int','dtype','-1',[]]],
['','convertScaleAbs','@brief Scales, calculates absolute values, and converts the result to 8-bit.
On each element of the input array, the function convertScaleAbs
performs three operations sequentially: scaling, taking an absolute
value, conversion to an unsigned 8-bit type:
\\f[\\texttt{dst} (I)= \\texttt{saturate\\_cast<uchar>} (| \\texttt{src} (I)* \\texttt{alpha} + \\texttt{beta} |)\\f]
In case of multi-channel arrays, the function processes each channel
independently. When the output is not 8-bit, the operation can be
emulated by calling the Mat::convertTo method (or by using matrix
expressions) and then by calculating an absolute value of the result.
For example:
@code{.cpp}
Mat_<float> A(30,30);
randu(A, Scalar(-100), Scalar(100));
Mat_<float> B = A*5 + 3;
B = abs(B);
// Mat_<float> B = abs(A*5+3) will also do the job,
// but it will allocate a temporary matrix
@endcode
@param src input array.
@param dst output array.
@param alpha optional scale factor.
@param beta optional delta added to the scaled values.
@sa Mat::convertTo, cv::abs(const Mat&)',0,'void',['Mat','src','',[]],['Mat','dst','',['/O']],['double','alpha','1',[]],['double','beta','0',[]]],
['','convertFp16','@brief Converts an array to half precision floating number.
This function converts FP32 (single precision floating point) from/to FP16 (half precision floating point). CV_16S format is used to represent FP16 data.
There are two use modes (src -> dst): CV_32F -> CV_16S and CV_16S -> CV_32F. The input array has to have type of CV_32F or
CV_16S to represent the bit depth. If the input array is neither of them, the function will raise an error.
The format of half precision floating point is defined in IEEE 754-2008.
@param src input array.
@param dst output array.',0,'void',['Mat','src','',[]],['Mat','dst','',['/O']]],
['','LUT','@brief Performs a look-up table transform of an array.
The function LUT fills the output array with values from the look-up table. Indices of the entries
are taken from the input array. That is, the function processes each element of src as follows:
\\f[\\texttt{dst} (I) \\leftarrow \\texttt{lut(src(I) + d)}\\f]
where
\\f[d = \\fork{0}{if \\(\\texttt{src}\\) has depth \\(\\texttt{CV_8U}\\)}{128}{if \\(\\texttt{src}\\) has depth \\(\\texttt{CV_8S}\\)}\\f]
@param src input array of 8-bit elements.
@param lut look-up table of 256 elements; in case of multi-channel input array, the table should
either have a single channel (in this case the same table is used for all channels) or the same
number of channels as in the input array.
@param dst output array of the same size and number of channels as src, and the same depth as lut.
@sa convertScaleAbs, Mat::convertTo',0,'void',['Mat','src','',[]],['Mat','lut','',[]],['Mat','dst','',['/O']]],
['',['cv::sum','sumElems'],'@brief Calculates the sum of array elements.
The function cv::sum calculates and returns the sum of array elements,
independently for each channel.
@param src input array that must have from 1 to 4 channels.
@sa countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce',0,'Scalar',['Mat','src','',[]]],
['','countNonZero','@brief Counts non-zero array elements.
The function returns the number of non-zero elements in src :
\\f[\\sum _{I: \\; \\texttt{src} (I) \\ne0 } 1\\f]
@param src single-channel array.
@sa mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix',0,'int',['Mat','src','',[]]],
['','findNonZero','@brief Returns the list of locations of non-zero pixels
Given a binary matrix (likely returned from an operation such
as threshold(), compare(), >, ==, etc, return all of
the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y)
For example:
@code{.cpp}
cv::Mat binaryImage; // input, binary image
cv::Mat locations; // output, locations of non-zero pixels
cv::findNonZero(binaryImage, locations);
// access pixel coordinates
Point pnt = locations.at<Point>(i);
@endcode
or
@code{.cpp}
cv::Mat binaryImage; // input, binary image
vector<Point> locations; // output, locations of non-zero pixels
cv::findNonZero(binaryImage, locations);
// access pixel coordinates
Point pnt = locations[i];
@endcode
@param src single-channel array
@param idx the output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input',0,'void',['Mat','src','',[]],['Mat','idx','',['/O']]],
['','mean','@brief Calculates an average (mean) of array elements.
The function cv::mean calculates the mean value M of array elements,
independently for each channel, and return it:
\\f[\\begin{array}{l} N = \\sum _{I: \\; \\texttt{mask} (I) \\ne 0} 1 \\\\ M_c = \\left ( \\sum _{I: \\; \\texttt{mask} (I) \\ne 0}{ \\texttt{mtx} (I)_c} \\right )/N \\end{array}\\f]
When all the mask elements are 0\'s, the function returns Scalar::all(0)
@param src input array that should have from 1 to 4 channels so that the result can be stored in
Scalar_ .
@param mask optional operation mask.
@sa countNonZero, meanStdDev, norm, minMaxLoc',0,'Scalar',['Mat','src','',[]],['Mat','mask','Mat()',[]]],
['','meanStdDev','Calculates a mean and standard deviation of array elements.
The function cv::meanStdDev calculates the mean and the standard deviation M
of array elements independently for each channel and returns it via the
output parameters:
\\f[\\begin{array}{l} N = \\sum _{I, \\texttt{mask} (I) \\ne 0} 1 \\\\ \\texttt{mean} _c = \\frac{\\sum_{ I: \\; \\texttt{mask}(I) \\ne 0} \\texttt{src} (I)_c}{N} \\\\ \\texttt{stddev} _c = \\sqrt{\\frac{\\sum_{ I: \\; \\texttt{mask}(I) \\ne 0} \\left ( \\texttt{src} (I)_c - \\texttt{mean} _c \\right )^2}{N}} \\end{array}\\f]
When all the mask elements are 0\'s, the function returns
mean=stddev=Scalar::all(0).
@note The calculated standard deviation is only the diagonal of the
complete normalized covariance matrix. If the full matrix is needed, you
can reshape the multi-channel array M x N to the single-channel array
M\\*N x mtx.channels() (only possible when the matrix is continuous) and
then pass the matrix to calcCovarMatrix .
@param src input array that should have from 1 to 4 channels so that the results can be stored in
Scalar_ \'s.
@param mean output parameter: calculated mean value.
@param stddev output parameter: calculated standard deviation.
@param mask optional operation mask.
@sa countNonZero, mean, norm, minMaxLoc, calcCovarMatrix',0,'void',['Mat','src','',[]],['Mat','mean','',['/O']],['Mat','stddev','',['/O']],['Mat','mask','Mat()',[]]],
['','norm','@brief Calculates the absolute norm of an array.
This version of #norm calculates the absolute norm of src1. The type of norm to calculate is specified using #NormTypes.
As example for one array consider the function \\f$r(x)= \\begin{pmatrix} x \\\\ 1-x \\end{pmatrix}, x \\in [-1;1]\\f$.
The \\f$ L_{1}, L_{2} \\f$ and \\f$ L_{\\infty} \\f$ norm for the sample value \\f$r(-1) = \\begin{pmatrix} -1 \\\\ 2 \\end{pmatrix}\\f$
is calculated as follows
\\f{align*}
\\| r(-1) \\|_{L_1} &= |-1| + |2| = 3 \\\\
\\| r(-1) \\|_{L_2} &= \\sqrt{(-1)^{2} + (2)^{2}} = \\sqrt{5} \\\\
\\| r(-1) \\|_{L_\\infty} &= \\max(|-1|,|2|) = 2
\\f}
and for \\f$r(0.5) = \\begin{pmatrix} 0.5 \\\\ 0.5 \\end{pmatrix}\\f$ the calculation is
\\f{align*}
\\| r(0.5) \\|_{L_1} &= |0.5| + |0.5| = 1 \\\\
\\| r(0.5) \\|_{L_2} &= \\sqrt{(0.5)^{2} + (0.5)^{2}} = \\sqrt{0.5} \\\\
\\| r(0.5) \\|_{L_\\infty} &= \\max(|0.5|,|0.5|) = 0.5.
\\f}
The following graphic shows all values for the three norm functions \\f$\\| r(x) \\|_{L_1}, \\| r(x) \\|_{L_2}\\f$ and \\f$\\| r(x) \\|_{L_\\infty}\\f$.
It is notable that the \\f$ L_{1} \\f$ norm forms the upper and the \\f$ L_{\\infty} \\f$ norm forms the lower border for the example function \\f$ r(x) \\f$.

When the mask parameter is specified and it is not empty, the norm is
If normType is not specified, #NORM_L2 is used.
calculated only over the region specified by the mask.
Multi-channel input arrays are treated as single-channel arrays, that is,
the results for all channels are combined.
Hamming norms can only be calculated with CV_8U depth arrays.
@param src1 first input array.
@param normType type of the norm (see #NormTypes).
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.',0,'double',['Mat','src1','',[]],['int','normType','NORM_L2',[]],['Mat','mask','Mat()',[]]],
['','norm','@brief Calculates an absolute difference norm or a relative difference norm.
This version of cv::norm calculates the absolute difference norm
or the relative difference norm of arrays src1 and src2.
The type of norm to calculate is specified using #NormTypes.
@param src1 first input array.
@param src2 second input array of the same size and the same type as src1.
@param normType type of the norm (see #NormTypes).
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.',0,'double',['Mat','src1','',[]],['Mat','src2','',[]],['int','normType','NORM_L2',[]],['Mat','mask','Mat()',[]]],
['','PSNR','@brief Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
This function calculates the Peak Signal-to-Noise Ratio (PSNR) image quality metric in decibels (dB),
between two input arrays src1 and src2. The arrays must have the same type.
The PSNR is calculated as follows:
\\f[
\\texttt{PSNR} = 10 \\cdot \\log_{10}{\\left( \\frac{R^2}{MSE} \\right) }
\\f]
where R is the maximum integer value of depth (e.g. 255 in the case of CV_8U data)
and MSE is the mean squared error between the two arrays.
@param src1 first input array.
@param src2 second input array of the same size as src1.
@param R the maximum pixel value (255 by default)',0,'double',['Mat','src1','',[]],['Mat','src2','',[]],['double','R','255.',[]]],
['','batchDistance','@brief naive nearest neighbor finder
see http://en.wikipedia.org/wiki/Nearest_neighbor_search
@todo document',0,'void',['Mat','src1','',[]],['Mat','src2','',[]],['Mat','dist','',['/O']],['int','dtype','',[]],['Mat','nidx','',['/O']],['int','normType','NORM_L2',[]],['int','K','0',[]],['Mat','mask','Mat()',[]],['int','update','0',[]],['bool','crosscheck','false',[]]],
['','normalize','@brief Normalizes the norm or value range of an array.
The function cv::normalize normalizes scale and shift the input array elements so that
\\f[\\| \\texttt{dst} \\| _{L_p}= \\texttt{alpha}\\f]
(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
\\f[\\min _I \\texttt{dst} (I)= \\texttt{alpha} , \\, \\, \\max _I \\texttt{dst} (I)= \\texttt{beta}\\f]
when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be
normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this
sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or
min-max but modify the whole array, you can use norm and Mat::convertTo.
In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this,
the range transformation for sparse matrices is not allowed since it can shift the zero level.
Possible usage with some positive example data:
@code{.cpp}
vector<double> positiveData = { 2.0, 8.0, 10.0 };
vector<double> normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
// Norm to probability (total count)
// sum(numbers) = 20.0
// 2.0 0.1 (2.0/20.0)
// 8.0 0.4 (8.0/20.0)
// 10.0 0.5 (10.0/20.0)
normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
// Norm to unit vector: ||positiveData|| = 1.0
// 2.0 0.15
// 8.0 0.62
// 10.0 0.77
normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
// Norm to max element
// 2.0 0.2 (2.0/10.0)
// 8.0 0.8 (8.0/10.0)
// 10.0 1.0 (10.0/10.0)
normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
// Norm to range [0.0;1.0]
// 2.0 0.0 (shift to left border)
// 8.0 0.75 (6.0/8.0)
// 10.0 1.0 (shift to right border)
normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
@endcode
@param src input array.
@param dst output array of the same size as src .
@param alpha norm value to normalize to or the lower range boundary in case of the range
normalization.
@param beta upper range boundary in case of the range normalization; it is not used for the norm
normalization.
@param norm_type normalization type (see cv::NormTypes).
@param dtype when negative, the output array has the same type as src; otherwise, it has the same
number of channels as src and the depth =CV_MAT_DEPTH(dtype).
@param mask optional operation mask.
@sa norm, Mat::convertTo, SparseMat::convertTo',0,'void',['Mat','src','',[]],['Mat','dst','',['/IO']],['double','alpha','1',[]],['double','beta','0',[]],['int','norm_type','NORM_L2',[]],['int','dtype','-1',[]],['Mat','mask','Mat()',[]]],
['','minMaxLoc','@brief Finds the global minimum and maximum in an array.
The function cv::minMaxLoc finds the minimum and maximum element values and their positions. The
extremums are searched across the whole array or, if mask is not an empty array, in the specified
array region.
The function do not work with multi-channel arrays. If you need to find minimum or maximum
elements across all the channels, use Mat::reshape first to reinterpret the array as
single-channel. Or you may extract the particular channel using either extractImageCOI , or
mixChannels , or split .
@param src input single-channel array.
@param minVal pointer to the returned minimum value; NULL is used if not required.
@param maxVal pointer to the returned maximum value; NULL is used if not required.
@param minLoc pointer to the returned minimum location (in 2D case); NULL is used if not required.
@param maxLoc pointer to the returned maximum location (in 2D case); NULL is used if not required.
@param mask optional mask used to select a sub-array.
@sa max, min, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape',0,'void',['Mat','src','',[]],['double*','minVal','',['/O']],['double*','maxVal','0',['/O']],['Point*','minLoc','0',['/O']],['Point*','maxLoc','0',['/O']],['Mat','mask','Mat()',[]]],
['','reduce','@brief Reduces a matrix to a vector.
The function #reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
1D vectors and performing the specified operation on the vectors until a single row/column is
obtained. For example, the function can be used to compute horizontal and vertical projections of a
raster image. In case of #REDUCE_MAX and #REDUCE_MIN , the output image should have the same type as the source one.
In case of #REDUCE_SUM and #REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy.
And multi-channel arrays are also supported in these two reduction modes.
The following code demonstrates its usage for a single channel matrix.
@snippet snippets/core_reduce.cpp example
And the following code demonstrates its usage for a two-channel matrix.
@snippet snippets/core_reduce.cpp example2
@param src input 2D matrix.
@param dst output vector. Its size and type is defined by dim and dtype parameters.
@param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to
a single row. 1 means that the matrix is reduced to a single column.
@param rtype reduction operation that could be one of #ReduceTypes
@param dtype when negative, the output vector will have the same type as the input matrix,
otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).
@sa repeat',0,'void',['Mat','src','',[]],['Mat','dst','',['/O']],['int','dim','',[]],['int','rtype','',[]],['int','dtype','-1',[]]],
['','merge','@overload
@param mv input vector of matrices to be merged; all the matrices in mv must have the same
size and the same depth.
@param dst output array of the same size and the same depth as mv[0]; The number of channels will
be the total number of channels in the matrix array.',0,'void',['vector_Mat','mv','',[]],['Mat','dst','',['/O']]],
['','split','@overload
@param m input multi-channel array.
@param mv output vector of arrays; the arrays themselves are reallocated, if needed.',0,'void',['Mat','m','',[]],['vector_Mat','mv','',['/O']]],
['','mixChannels','@overload
@param src input array or vector of matrices; all of the matrices must have the same size and the
same depth.
@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
depth must be the same as in src[0].
@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\\*2] is
a 0-based index of the input channel in src, fromTo[k\\*2+1] is an index of the output channel in
dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
channels; as a special case, when fromTo[k\\*2] is negative, the corresponding output channel is
filled with zero .',0,'void',['vector_Mat','src','',[]],['vector_Mat','dst','',['/IO']],['vector_int','fromTo','',['/C','/Ref']]],
['','extractChannel','@brief Extracts a single channel from src (coi is 0-based index)
@param src input array
@param dst output array
@param coi index of channel to extract
@sa mixChannels, split',0,'void',['Mat','src','',[]],['Mat','dst','',['/O']],['int','coi','',[]]],
['','insertChannel','@brief Inserts a single channel to dst (coi is 0-based index)
@param src input array
@param dst output array
@param coi index of channel for insertion
@sa mixChannels, merge',0,'void',['Mat','src','',[]],['Mat','dst','',['/IO']],['int','coi','',[]]],
['','flip','@brief Flips a 2D array around vertical, horizontal, or both axes.
The function cv::flip flips the array in one of three different ways (row
and column indices are 0-based):
\\f[\\texttt{dst} _{ij} =
\\left\\{
\\begin{array}{l l}
\\texttt{src} _{\\texttt{src.rows}-i-1,j} & if\\; \\texttt{flipCode} = 0 \\\\
\\texttt{src} _{i, \\texttt{src.cols} -j-1} & if\\; \\texttt{flipCode} > 0 \\\\
\\texttt{src} _{ \\texttt{src.rows} -i-1, \\texttt{src.cols} -j-1} & if\\; \\texttt{flipCode} < 0 \\\\
\\end{array}
\\right.\\f]
The example scenarios of using the function are the following:
* Vertical flipping of the image (flipCode == 0) to switch between
top-left and bottom-left image origin. This is a typical operation
in video processing on Microsoft Windows\\* OS.
* Horizontal flipping of the image with the subsequent horizontal
shift and absolute difference calculation to check for a
vertical-axis symmetry (flipCode \\> 0).
* Simultaneous horizontal and vertical flipping of the image with
the subsequent shift and absolute difference calculation to check
for a central symmetry (flipCode \\< 0).
* Reversing the order of point arrays (flipCode \\> 0 or
flipCode == 0).
@param src input array.
@param dst output array of the same size and type as src.
@param flipCode a flag to specify how to flip the array; 0 means
flipping around the x-axis and positive value (for example, 1) means
flipping around y-axis. Negative value (for example, -1) means flipping
around both axes.
@sa transpose , repeat , completeSymm',0,'void',['Mat','src','',[]],['Mat','dst','',['/O']],['int','flipCode','',[]]],
['','rotate','@brief Rotates a 2D array in multiples of 90 degrees.
The function cv::rotate rotates the array in one of three different ways:
* Rotate by 90 degrees clockwise (rotateCode = ROTATE_90_CLOCKWISE).
* Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
* Rotate by 270 degrees clockwise (rotateCode = ROTATE_90_COUNTERCLOCKWISE).
@param src input array.
@param dst output array of the same type as src. The size is the same with ROTATE_180,
and the rows and cols are switched for ROTATE_90_CLOCKWISE and ROTATE_90_COUNTERCLOCKWISE.
@param rotateCode an enum to specify how to rotate the array; see the enum #RotateFlags
@sa transpose , repeat , completeSymm, flip, RotateFlags',0,'void',['Mat','src','',[]],['Mat','dst','',['/O']],['int','rotateCode','',[]]],
['','repeat','@brief Fills the output array with repeated copies of the input array.
The function cv::repeat duplicates the input array one or more times along each of the two axes:
\\f[\\texttt{dst} _{ij}= \\texttt{src} _{i\\mod src.rows, \\; j\\mod src.cols }\\f]
The second variant of the function is more convenient to use with @ref MatrixExpressions.
@param src input array to replicate.
@param ny Flag to specify how many times the `src` is repeated along the
vertical axis.
@param nx Flag to specify how many times the `src` is repeated along the
horizontal axis.
@param dst output array of the same type as `src`.
@sa cv::reduce',0,'void',['Mat','src','',[]],['int','ny','',[]],['int','nx','',[]],['Mat','dst','',['/O']]],
['','hconcat','@overload
@code{.cpp}
std::vector<cv::Mat> matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
cv::Mat out;
cv::hconcat( matrices, out );
//out:
//[1, 2, 3;
// 1, 2, 3;
// 1, 2, 3;
// 1, 2, 3]
@endcode
@param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
@param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
same depth.',0,'void',['vector_Mat','src','',[]],['Mat','dst','',['/O']]],
['','vconcat','@overload
@code{.cpp}
std::vector<cv::Mat> matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
cv::Mat out;
cv::vconcat( matrices, out );
//out:
//[1, 1, 1, 1;
// 2, 2, 2, 2;
// 3, 3, 3, 3]
@endcode
@param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth
@param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
same depth.',0,'void',['vector_Mat','src','',[]],['Mat','dst','',['/O']]],
['','bitwise_and','@brief computes bitwise conjunction of the two arrays (dst = src1 & src2)
Calculates the per-element bit-wise conjunction of two arrays or an
array and a scalar.
The function cv::bitwise_and calculates the per-element bit-wise logical conjunction for:
* Two arrays when src1 and src2 have the same size:
\\f[\\texttt{dst} (I) = \\texttt{src1} (I) \\wedge \\texttt{src2} (I) \\quad \\texttt{if mask} (I) \\ne0\\f]
* An array and a scalar when src2 is constructed from Scalar or has
the same number of elements as `src1.channels()`:
\\f[\\texttt{dst} (I) = \\texttt{src1} (I) \\wedge \\texttt{src2} \\quad \\texttt{if mask} (I) \\ne0\\f]
* A scalar and an array when src1 is constructed from Scalar or has
the same number of elements as `src2.channels()`:
\\f[\\texttt{dst} (I) = \\texttt{src1} \\wedge \\texttt{src2} (I) \\quad \\texttt{if mask} (I) \\ne0\\f]
In case of floating-point arrays, their machine-specific bit
representations (usually IEEE754-compliant) are used for the operation.
In case of multi-channel arrays, each channel is processed
independently. In the second and third cases above, the scalar is first
converted to the array type.
@param src1 first input array or a scalar.
@param src2 second input array or a scalar.
@param dst output array that has the same size and type as the input
arrays.
@param mask optional operation mask, 8-bit single channel array, that
specifies elements of the output array to be changed.',0,'void',['Mat','src1','',[]],['Mat','src2','',[]],['Mat','dst','',['/O']],['Mat','mask','Mat()',[]]],
['','bitwise_or','@brief Calculates the per-element bit-wise disjunction of two arrays or an
array and a scalar.
The function cv::bitwise_or calculates the per-element bit-wise logical disjunction for:
* Two arrays when src1 and src2 have the same size:
\\f[\\texttt{dst} (I) = \\texttt{src1} (I) \\vee \\texttt{src2} (I) \\quad \\texttt{if mask} (I) \\ne0\\f]
* An array and a scalar when src2 is constructed from Scalar or has
the same number of elements as `src1.channels()`:
\\f[\\texttt{dst} (I) = \\texttt{src1} (I) \\vee \\texttt{src2} \\quad \\texttt{if mask} (I) \\ne0\\f]
* A scalar and an array when src1 is constructed from Scalar or has
the same number of elements as `src2.channels()`:
\\f[\\texttt{dst} (I) = \\texttt{src1} \\vee \\texttt{src2} (I) \\quad \\texttt{if mask} (I) \\ne0\\f]
In case of floating-point arrays, their machine-specific bit
representations (usually IEEE754-compliant) are used for the operation.
In case of multi-channel arrays, each channel is processed
independently. In the second and third cases above, the scalar is first
converted to the array type.
@param src1 first input array or a scalar.
@param src2 second input array or a scalar.
@param dst output array that has the same size and type as the input
arrays.
@param mask optional operation mask, 8-bit single channel array, that
specifies elements of the output array to be changed.',0,'void',['Mat','src1','',[]],['Mat','src2','',[]],['Mat','dst','',['/O']],['Mat','mask','Mat()',[]]],
['','bitwise_xor','@brief Calculates the per-element bit-wise "exclusive or" operation on two
arrays or an array and a scalar.
The function cv::bitwise_xor calculates the per-element bit-wise logical "exclusive-or"
operation for:
* Two arrays when src1 and src2 have the same size:
\\f[\\texttt{dst} (I) = \\texttt{src1} (I) \\oplus \\texttt{src2} (I) \\quad \\texttt{if mask} (I) \\ne0\\f]
* An array and a scalar when src2 is constructed from Scalar or has
the same number of elements as `src1.channels()`:
\\f[\\texttt{dst} (I) = \\texttt{src1} (I) \\oplus \\texttt{src2} \\quad \\texttt{if mask} (I) \\ne0\\f]
* A scalar and an array when src1 is constructed from Scalar or has
the same number of elements as `src2.channels()`:
\\f[\\texttt{dst} (I) = \\texttt{src1} \\oplus \\texttt{src2} (I) \\quad \\texttt{if mask} (I) \\ne0\\f]
In case of floating-point arrays, their machine-specific bit
representations (usually IEEE754-compliant) are used for the operation.
In case of multi-channel arrays, each channel is processed
independently. In the 2nd and 3rd cases above, the scalar is first
converted to the array type.
@param src1 first input array or a scalar.
@param src2 second input array or a scalar.
@param dst output array that has the same size and type as the input
arrays.
@param mask optional operation mask, 8-bit single channel array, that
specifies elements of the output array to be changed.',0,'void',['Mat','src1','',[]],['Mat','src2','',[]],['Mat','dst','',['/O']],['Mat','mask','Mat()',[]]],
['','bitwise_not','@brief Inverts every bit of an array.
The function cv::bitwise_not calculates per-element bit-wise inversion of the input
array:
\\f[\\texttt{dst} (I) = \\neg \\texttt{src} (I)\\f]
In case of a floating-point input array, its machine-specific bit
representation (usually IEEE754-compliant) is used for the operation. In
case of multi-channel arrays, each channel is processed independently.
@param src input array.
@param dst output array that has the same size and type as the input
array.
@param mask optional operation mask, 8-bit single channel array, that
specifies elements of the output array to be changed.',0,'void',['Mat','src','',[]],['Mat','dst','',['/O']],['Mat','mask','Mat()',[]]],
['','absdiff','@brief Calculates the per-element absolute difference between two arrays or between an array and a scalar.
The function cv::absdiff calculates:
* Absolute difference between two arrays when they have the same
size and type:
\\f[\\texttt{dst}(I) = \\texttt{saturate} (| \\texttt{src1}(I) - \\texttt{src2}(I)|)\\f]
* Absolute difference between an array and a scalar when the second
array is constructed from Scalar or has as many elements as the
number of channels in `src1`:
\\f[\\texttt{dst}(I) = \\texttt{saturate} (| \\texttt{src1}(I) - \\texttt{src2} |)\\f]
* Absolute difference between a scalar and an array when the first
array is constructed from Scalar or has as many elements as the
number of channels in `src2`:
\\f[\\texttt{dst}(I) = \\texttt{saturate} (| \\texttt{src1} - \\texttt{src2}(I) |)\\f]
where I is a multi-dimensional index of array elements. In case of
multi-channel arrays, each channel is processed independently.
@note Saturation is not applied when the arrays have the depth CV_32S.
You may even get a negative value in the case of overflow.
@param src1 first input array or a scalar.
@param src2 second input array or a scalar.
@param dst output array that has the same size and type as input arrays.
@sa cv::abs(const Mat&)',0,'void',['Mat','src1','',[]],['Mat','src2','',[]],['Mat','dst','',['/O']]],
['','copyTo','@brief This is an overloaded member function, provided for convenience (python)
Copies the matrix to another one.
When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, the newly allocated matrix is initialized with all zeros before copying the data.
@param src source matrix.
@param dst Destination matrix. If it does not have a proper size or type before the operation, it is
reallocated.
@param mask Operation mask of the same size as \\*this. Its non-zero elements indicate which matrix
elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels.',0,'void',['Mat','src','',[]],['Mat','dst','',['/O']],['Mat','mask','',[]]],
['','inRange','@brief Checks if array elements lie between the elements of two other arrays.
The function checks the range as follows:
- For every element of a single-channel input array:
\\f[\\texttt{dst} (I)= \\texttt{lowerb} (I)_0 \\leq \\texttt{src} (I)_0 \\leq \\texttt{upperb} (I)_0\\f]
- For two-channel arrays:
\\f[\\texttt{dst} (I)= \\texttt{lowerb} (I)_0 \\leq \\texttt{src} (I)_0 \\leq \\texttt{upperb} (I)_0 \\land \\texttt{lowerb} (I)_1 \\leq \\texttt{src} (I)_1 \\leq \\texttt{upperb} (I)_1\\f]
- and so forth.
That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
specified 1D, 2D, 3D, ... box and 0 otherwise.
When the lower and/or upper boundary parameters are scalars, the indexes
(I) at lowerb and upperb in the above formulas should be omitted.
@param src first input array.
@param lowerb inclusive lower boundary array or a scalar.
@param upperb inclusive upper boundary array or a scalar.
@param dst output array of the same size as src and CV_8U type.',0,'void',['Mat','src','',[]],['Mat','lowerb','',[]],['Mat','upperb','',[]],['Mat','dst','',['/O']]],
['','compare','@brief Performs the per-element comparison of two arrays or an array and scalar value.
The function compares:
* Elements of two arrays when src1 and src2 have the same size:
\\f[\\texttt{dst} (I) = \\texttt{src1} (I) \\,\\texttt{cmpop}\\, \\texttt{src2} (I)\\f]
* Elements of src1 with a scalar src2 when src2 is constructed from
Scalar or has a single element:
\\f[\\texttt{dst} (I) = \\texttt{src1}(I) \\,\\texttt{cmpop}\\, \\texttt{src2}\\f]
* src1 with elements of src2 when src1 is constructed from Scalar or
has a single element:
\\f[\\texttt{dst} (I) = \\texttt{src1} \\,\\texttt{cmpop}\\, \\texttt{src2} (I)\\f]
When the comparison result is true, the corresponding element of output
array is set to 255. The comparison operations can be replaced with the
equivalent matrix expressions:
@code{.cpp}
Mat dst1 = src1 >= src2;
Mat dst2 = src1 < 8;
...
@endcode
@param src1 first input array or a scalar; when it is an array, it must have a single channel.
@param src2 second input array or a scalar; when it is an array, it must have a single channel.
@param dst output array of type ref CV_8U that has the same size and the same number of channels as
the input arrays.
@param cmpop a flag, that specifies correspondence between the arrays (cv::CmpTypes)
@sa checkRange, min, max, threshold',0,'void',['Mat','src1','',[]],['Mat','src2','',[]],['Mat','dst','',['/O']],['int','cmpop','',[]]],
['','min','@brief Calculates per-element minimum of two arrays or an array and a scalar.
The function cv::min calculates the per-element minimum of two arrays:
\\f[\\texttt{dst} (I)= \\min ( \\texttt{src1} (I), \\texttt{src2} (I))\\f]
or array and a scalar:
\\f[\\texttt{dst} (I)= \\min ( \\texttt{src1} (I), \\texttt{value} )\\f]
@param src1 first input array.
@param src2 second input array of the same size and type as src1.
@param dst output array of the same size and type as src1.
@sa max, compare, inRange, minMaxLoc',0,'void',['Mat','src1','',[]],['Mat','src2','',[]],['Mat','dst','',['/O']]],
['','max','@brief Calculates per-element maximum of two arrays or an array and a scalar.
The function cv::max calculates the per-element maximum of two arrays:
\\f[\\texttt{dst} (I)= \\max ( \\texttt{src1} (I), \\texttt{src2} (I))\\f]
or array and a scalar:
\\f[\\texttt{dst} (I)= \\max ( \\texttt{src1} (I), \\texttt{value} )\\f]
@param src1 first input array.
@param src2 second input array of the same size and type as src1 .
@param dst output array of the same size and type as src1.
@sa min, compare, inRange, minMaxLoc, @ref MatrixExpressions',0,'void',['Mat','src1','',[]],['Mat','src2','',[]],['Mat','dst','',['/O']]],
['','sqrt','@brief Calculates a square root of array elements.
The function cv::sqrt calculates a square root of each input array element.
In case of multi-channel arrays, each channel is processed
independently. The accuracy is approximately the same as of the built-in
std::sqrt .
@param src input floating-point array.
@param dst output array of the same size and type as src.',0,'void',['Mat','src','',[]],['Mat','dst','',['/O']]],
['','pow','@brief Raises every array element to a power.
The function cv::pow raises every element of the input array to power :
\\f[\\texttt{dst} (I) = \\fork{\\texttt{src}(I)^{power}}{if \\(\\texttt{power}\\) is integer}{|\\texttt{src}(I)|^{power}}{otherwise}\\f]
So, for a non-integer power exponent, the absolute values of input array
elements are used. However, it is possible to get true values for
negative values using some extra operations. In the example below,
computing the 5th root of array src shows:
@code{.cpp}
Mat mask = src < 0;
pow(src, 1./5, dst);
subtract(Scalar::all(0), dst, dst, mask);
@endcode
For some values of power, such as integer values, 0.5 and -0.5,
specialized faster algorithms are used.
Special values (NaN, Inf) are not handled.
@param src input array.
@param power exponent of power.
@param dst output array of the same size and type as src.
@sa sqrt, exp, log, cartToPolar, polarToCart',0,'void',['Mat','src','',[]],['double','power','',[]],['Mat','dst','',['/O']]],
['','exp','@brief Calculates the exponent of every array element.
The function cv::exp calculates the exponent of every element of the input
array:
\\f[\\texttt{dst} [I] = e^{ src(I) }\\f]
The maximum relative error is about 7e-6 for single-precision input and
less than 1e-10 for double-precision input. Currently, the function
converts denormalized values to zeros on output. Special values (NaN,
Inf) are not handled.
@param src input array.
@param dst output array of the same size and type as src.
@sa log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude',0,'void',['Mat','src','',[]],['Mat','dst','',['/O']]],
['','log','@brief Calculates the natural logarithm of every array element.
The function cv::log calculates the natural logarithm of every element of the input array:
\\f[\\texttt{dst} (I) = \\log (\\texttt{src}(I)) \\f]
Output on zero, negative and special (NaN, Inf) values is undefined.
@param src input array.
@param dst output array of the same size and type as src .
@sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude',0,'void',['Mat','src','',[]],['Mat','dst','',['/O']]],
['','polarToCart','@brief Calculates x and y coordinates of 2D vectors from their magnitude and angle.
The function cv::polarToCart calculates the Cartesian coordinates of each 2D
vector represented by the corresponding elements of magnitude and angle:
\\f[\\begin{array}{l} \\texttt{x} (I) = \\texttt{magnitude} (I) \\cos ( \\texttt{angle} (I)) \\\\ \\texttt{y} (I) = \\texttt{magnitude} (I) \\sin ( \\texttt{angle} (I)) \\\\ \\end{array}\\f]
The relative accuracy of the estimated coordinates is about 1e-6.
@param magnitude input floating-point array of magnitudes of 2D vectors;
it can be an empty matrix (=Mat()), in this case, the function assumes
that all the magnitudes are =1; if it is not empty, it must have the
same size and type as angle.
@param angle input floating-point array of angles of 2D vectors.
@param x output array of x-coordinates of 2D vectors; it has the same
size and type as angle.
@param y output array of y-coordinates of 2D vectors; it has the same
size and type as angle.
@param angleInDegrees when true, the input angles are measured in
degrees, otherwise, they are measured in radians.
@sa cartToPolar, magnitude, phase, exp, log, pow, sqrt',0,'void',['Mat','magnitude','',[]],['Mat','angle','',[]],['Mat','x','',['/O']],['Mat','y','',['/O']],['bool','angleInDegrees','false',[]]],
['','cartToPolar','@brief Calculates the magnitude and angle of 2D vectors.
The function cv::cartToPolar calculates either the magnitude, angle, or both
for every 2D vector (x(I),y(I)):
\\f[\\begin{array}{l} \\texttt{magnitude} (I)= \\sqrt{\\texttt{x}(I)^2+\\texttt{y}(I)^2} , \\\\ \\texttt{angle} (I)= \\texttt{atan2} ( \\texttt{y} (I), \\texttt{x} (I))[ \\cdot180 / \\pi ] \\end{array}\\f]
The angles are calculated with accuracy about 0.3 degrees. For the point
(0,0), the angle is set to 0.
@param x array of x-coordinates; this must be a single-precision or
double-precision floating-point array.
@param y array of y-coordinates, that must have the same size and same type as x.
@param magnitude output array of magnitudes of the same size and type as x.
@param angle output array of angles that has the same size and type as
x; the angles are measured in radians (from 0 to 2\\*Pi) or in degrees (0 to 360 degrees).
@param angleInDegrees a flag, indicating whether the angles are measured
in radians (which is by default), or in degrees.
@sa Sobel, Scharr',0,'void',['Mat','x','',[]],['Mat','y','',[]],['Mat','magnitude','',['/O']],['Mat','angle','',['/O']],['bool','angleInDegrees','false',[]]],
['','phase','@brief Calculates the rotation angle of 2D vectors.
The function cv::phase calculates the rotation angle of each 2D vector that
is formed from the corresponding elements of x and y :
\\f[\\texttt{angle} (I) = \\texttt{atan2} ( \\texttt{y} (I), \\texttt{x} (I))\\f]
The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 ,
the corresponding angle(I) is set to 0.
@param x input floating-point array of x-coordinates of 2D vectors.
@param y input array of y-coordinates of 2D vectors; it must have the
same size and the same type as x.
@param angle output array of vector angles; it has the same size and
same type as x .
@param angleInDegrees when true, the function calculates the angle in
degrees, otherwise, they are measured in radians.',0,'void',['Mat','x','',[]],['Mat','y','',[]],['Mat','angle','',['/O']],['bool','angleInDegrees','false',[]]],
['','magnitude','@brief Calculates the magnitude of 2D vectors.
The function cv::magnitude calculates the magnitude of 2D vectors formed
from the corresponding elements of x and y arrays:
\\f[\\texttt{dst} (I) = \\sqrt{\\texttt{x}(I)^2 + \\texttt{y}(I)^2}\\f]
@param x floating-point array of x-coordinates of the vectors.
@param y floating-point array of y-coordinates of the vectors; it must
have the same size as x.
@param magnitude output array of the same size and type as x.
@sa cartToPolar, polarToCart, phase, sqrt',0,'void',['Mat','x','',[]],['Mat','y','',[]],['Mat','magnitude','',['/O']]],
['','checkRange','@brief Checks every element of an input array for invalid values.
The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal \\>
-DBL_MAX and maxVal \\< DBL_MAX, the function also checks that each value is between minVal and
maxVal. In case of multi-channel arrays, each channel is processed independently. If some values
are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the
function either returns false (when quiet=true) or throws an exception.
@param a input array.
@param quiet a flag, indicating whether the functions quietly return false when the array elements
are out of range or they throw an exception.
@param pos optional output parameter, when not NULL, must be a pointer to array of src.dims
elements.
@param minVal inclusive lower boundary of valid values range.
@param maxVal exclusive upper boundary of valid values range.',0,'bool',['Mat','a','',[]],['bool','quiet','true',[]],['Point*','pos','0',['/O']],['double','minVal','-DBL_MAX',[]],['double','maxVal','DBL_MAX',[]]],
['','patchNaNs','@brief converts NaNs to the given number
@param a input/output matrix (CV_32F type).
@param val value to convert the NaNs',0,'void',['Mat','a','',['/IO']],['double','val','0',[]]],
['','gemm','@brief Performs generalized matrix multiplication.
The function cv::gemm performs generalized matrix multiplication similar to the
gemm functions in BLAS level 3. For example,
`gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`
corresponds to
\\f[\\texttt{dst} = \\texttt{alpha} \\cdot \\texttt{src1} ^T \\cdot \\texttt{src2} + \\texttt{beta} \\cdot \\texttt{src3} ^T\\f]
In case of complex (two-channel) data, performed a complex matrix
multiplication.
The function can be replaced with a matrix expression. For example, the
above call can be replaced with:
@code{.cpp}
dst = alpha*src1.t()*src2 + beta*src3.t();
@endcode
@param src1 first multiplied input matrix that could be real(CV_32FC1,
CV_64FC1) or complex(CV_32FC2, CV_64FC2).
@param src2 second multiplied input matrix of the same type as src1.
@param alpha weight of the matrix product.
@param src3 third optional delta matrix added to the matrix product; it
should have the same type as src1 and src2.
@param beta weight of src3.
@param dst output matrix; it has the proper size and the same type as
input matrices.
@param flags operation flags (cv::GemmFlags)
@sa mulTransposed , transform',0,'void',['Mat','src1','',[]],['Mat','src2','',[]],['double','alpha','',[]],['Mat','src3','',[]],['double','beta','',[]],['Mat','dst','',['/O']],['int','flags','0',[]]],
['','mulTransposed','@brief Calculates the product of a matrix and its transposition.
The function cv::mulTransposed calculates the product of src and its
transposition:
\\f[\\texttt{dst} = \\texttt{scale} ( \\texttt{src} - \\texttt{delta} )^T ( \\texttt{src} - \\texttt{delta} )\\f]
if aTa=true , and
\\f[\\texttt{dst} = \\texttt{scale} ( \\texttt{src} - \\texttt{delta} ) ( \\texttt{src} - \\texttt{delta} )^T\\f]
otherwise. The function is used to calculate the covariance matrix. With
zero delta, it can be used as a faster substitute for general matrix
product A\\*B when B=A\'
@param src input single-channel matrix. Note that unlike gemm, the
function can multiply not only floating-point matrices.
@param dst output square matrix.
@param aTa Flag specifying the multiplication ordering. See the
description below.
@param delta Optional delta matrix subtracted from src before the
multiplication. When the matrix is empty ( delta=noArray() ), it is
assumed to be zero, that is, nothing is subtracted. If it has the same
size as src , it is simply subtracted. Otherwise, it is "repeated" (see
repeat ) to cover the full src and then subtracted. Type of the delta
matrix, when it is not empty, must be the same as the type of created
output matrix. See the dtype parameter description below.
@param scale Optional scale factor for the matrix product.
@param dtype Optional type of the output matrix. When it is negative,