-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmake_summary.py
60 lines (42 loc) · 2.6 KB
/
make_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import pypsa
import pandas as pd
def make_csv():
scenarios = snakemake.config["run_settings"]["scenario"]
columns = pd.MultiIndex.from_product((scenarios,
snakemake.config["run_settings"]["country"]),
names=["scenario","country"])
stats = pd.DataFrame(columns=columns,dtype=float)
for scenario in scenarios:
for ct in snakemake.config["run_settings"]["country"]:
print(scenario,ct)
network = pypsa.Network("{}{}-{}.nc".format(snakemake.config["results_dir"],ct,scenario))
stats.at["cost",(scenario,ct)] = network.buses_t.marginal_price.mean()[ct]
for g in ["wind","solar"]:
stats.at[g,(scenario,ct)] = network.generators.p_nom_opt[ct + " " + g]
stats.at["cost-" + g,(scenario,ct)] = (network.generators.p_nom_opt*network.generators.capital_cost)[ct + " " + g]/network.snapshot_weightings.sum()
for ls,ll in [("charger","battery charge"),("elec","H2 electrolysis"),("fc","H2 to power")]:
stats.at[ls,(scenario,ct)] = network.links.p_nom_opt[ct + " " + ll]
stats.at["cost-" + ls,(scenario,ct)] = (network.links.p_nom_opt*network.links.capital_cost)[ct + " " + ll]/network.snapshot_weightings.sum()
for es, el in [("batt","battery storage"),("H2","H2 storage")]:
stats.at[es,(scenario,ct)] = network.stores.e_nom_opt[ct + " " + el]
stats.at["cost-" + es,(scenario,ct)] = (network.stores.e_nom_opt*network.stores.capital_cost)[ct + " " + el]/network.snapshot_weightings.sum()
available = network.generators_t.p_max_pu.multiply(network.generators.p_nom_opt).sum()
used = network.generators_t.p.sum()
curtailment = (available-used)/available
load = network.loads_t.p.sum().sum()
supply = available/load
stats.loc["wcurt",(scenario,ct)] = curtailment[ct + " wind"]
stats.loc["scurt",(scenario,ct)] = curtailment[ct + " solar"]
stats.loc["wsupply",(scenario,ct)] = supply[ct + " wind"]
stats.loc["ssupply",(scenario,ct)] = supply[ct + " solar"]
stats.to_csv(snakemake.output[0])
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from pypsa.descriptors import Dict
import yaml
snakemake = Dict()
with open('config.yaml') as f:
snakemake.config = yaml.load(f)
snakemake["output"] = ["{}summary.csv".format(snakemake.config["results_dir"])]
make_csv()