|
| 1 | +--- |
| 2 | +title: Maxwell's Equations |
| 3 | +description: A quick cheatsheet on Maxwell's Equations. Written as part of my notes for the PHYS-114 Course @ EPFL |
| 4 | +date: 2023-01-05 |
| 5 | +tags: [epfl, electromagnetism] |
| 6 | +published: true |
| 7 | +--- |
| 8 | + |
| 9 | +# Maxwell's Equations |
| 10 | + |
| 11 | +<Callout type="note"> |
| 12 | + This document is a quick cheatsheet on Maxwell's Equations. |
| 13 | + It is not meant to be a comprehensive guide, but rather a quick reference, based on my notes from the EPFL's [PHYS-114 Course](https://edu.epfl.ch/coursebook/fr/physique-generale-electromagnetisme-PHYS-114) on Electromagnetism. |
| 14 | +</Callout> |
| 15 | + |
| 16 | +## Deriving the Equations |
| 17 | + |
| 18 | +### First Equation |
| 19 | + |
| 20 | +Gauss's Law (Electric flux through a closed surface) |
| 21 | + |
| 22 | +$$ |
| 23 | +\Phi_E = \frac{Q}{\varepsilon_0} |
| 24 | +$$ |
| 25 | + |
| 26 | +$$ |
| 27 | +\iint_{\partial \Omega} \mathbf E \cdot d \mathbf s = \frac{Q}{\varepsilon_0} = 4 \pi k_e Q |
| 28 | +$$ |
| 29 | + |
| 30 | +$$ |
| 31 | +\iint_{\partial \Omega} \mathbf E \cdot d \mathbf s = 4\pi k_e \iiint_{\Omega} \rho \; dV |
| 32 | +$$ |
| 33 | + |
| 34 | +Using the Divergence Theorem : |
| 35 | + |
| 36 | +$$ |
| 37 | +\iiint_{\Omega} \nabla \cdot \mathbf E \; dV = 4\pi k_e \iiint_{\Omega} \rho \; dV |
| 38 | +$$ |
| 39 | +$$ |
| 40 | +\nabla \cdot \mathbf E = 4\pi k_e \rho |
| 41 | +$$ |
| 42 | +$$ |
| 43 | +\nabla \cdot \mathbf E = \frac{\rho}{\varepsilon_0} |
| 44 | +$$ |
| 45 | + |
| 46 | +### Second Equation |
| 47 | + |
| 48 | +Gauss's Law for Magnetism (Magnetic flux through a closed surface) |
| 49 | +$$ |
| 50 | +\Phi_B = \iint_{\partial \Omega} \mathbf B \cdot d \mathbf s |
| 51 | +$$ |
| 52 | +$$ |
| 53 | +\iint_{\partial \Omega} \mathbf B \cdot d \mathbf s = 0 |
| 54 | +$$ |
| 55 | +Using the Divergence Theorem : |
| 56 | +$$ |
| 57 | +\iiint_{\Omega} \nabla \cdot \mathbf B \; dV = 0 |
| 58 | +$$ |
| 59 | +$$ |
| 60 | +\nabla \cdot \mathbf B = 0 |
| 61 | +$$ |
| 62 | + |
| 63 | +This is equivalent to saying : |
| 64 | +- Magnetic monopoles / charges do not exist (base entity is the dipole) |
| 65 | +- Magnetic field lines have neither a beginning nor an end |
| 66 | + |
| 67 | +### Third Equation |
| 68 | + |
| 69 | +Faraday's Law (electromotive force, emf) |
| 70 | +$$ |
| 71 | +\mathcal{E} = - \partial_t \Phi_B |
| 72 | +$$ |
| 73 | +$$ |
| 74 | +\mathcal{E} = \int_{\partial\Sigma} \mathbf E \cdot d \mathbf l = - \partial_t \Phi_B = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s |
| 75 | +$$ |
| 76 | +$$ |
| 77 | +\int_{\partial\Sigma} \mathbf E \cdot d \mathbf l = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s |
| 78 | +$$ |
| 79 | + |
| 80 | +Using Stokes Theorem : |
| 81 | +$$ |
| 82 | +\iint_{\Sigma} \nabla \times \mathbf E \; d \mathbf s = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s |
| 83 | +$$ |
| 84 | +$$ |
| 85 | +\nabla \times \mathbf E = - \partial_t \mathbf B |
| 86 | +$$ |
| 87 | + |
| 88 | +Faraday's Law : |
| 89 | + |
| 90 | +The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path. |
| 91 | + |
| 92 | +### Fourth Equation |
| 93 | + |
| 94 | +Ampere's Law |
| 95 | +$$ |
| 96 | +\int_{\partial \Sigma} \mathbf B \cdot d \mathbf l = \mu_0 I_{\text{encl}} = \mu_0 \iint_{\Sigma} \mathbf j \cdot d \mathbf s |
| 97 | +$$ |
| 98 | +Maxwell's equation has the following component added to it : |
| 99 | +$$ |
| 100 | +\mu_0 \varepsilon_0 \;\partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s$$ |
| 101 | +$$\int_{\partial \Sigma} \mathbf B \cdot d \mathbf l = \mu_0 \left( \iint_{\Sigma} \mathbf j \cdot d \mathbf s + \varepsilon_0 \; \partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s \right) |
| 102 | +$$ |
| 103 | + |
| 104 | +Using Stoke's Theorem : |
| 105 | +$$ |
| 106 | +\iint_{\Sigma} \nabla \times \mathbf B \; d \mathbf s = \mu_0 \left( \iint_{\Sigma} \mathbf j \cdot d \mathbf s + \varepsilon_0 \;\partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s \right) |
| 107 | +$$ |
| 108 | +$$ |
| 109 | +\nabla \times \mathbf B = \mu_0 \left( \mathbf j + \varepsilon_0 \; \partial_t \mathbf E\right) |
| 110 | +$$ |
| 111 | + |
| 112 | +Ampère's Law : |
| 113 | + |
| 114 | +The original law states that magnetic fields relate to electric current, Maxwell's addition states that they also relate to changing electric fields |
| 115 | + |
| 116 | +Note : |
| 117 | +$\mu_0 = 4 \pi k_M$ |
| 118 | + |
| 119 | +## Differential Forms |
| 120 | + |
| 121 | +$\nabla \cdot \mathbf E = \frac{\rho}{\varepsilon_0}$ |
| 122 | + |
| 123 | +$\nabla \cdot \mathbf B = 0$ |
| 124 | + |
| 125 | +$\nabla \times \mathbf E = - \partial_t \mathbf B$ |
| 126 | + |
| 127 | +$\nabla \times \mathbf B = \mu_0 \left( \mathbf j + \varepsilon_0 \; \partial_t \mathbf E\right)$ |
| 128 | + |
| 129 | +## Integral Forms |
| 130 | + |
| 131 | +**First Equation** |
| 132 | +$$ |
| 133 | +\iint_{\partial \Omega} \mathbf E \cdot d \mathbf s = \frac{1}{\varepsilon_0} \iiint_{\Omega} \rho \; dV = \frac{Q}{\varepsilon_0} |
| 134 | +$$ |
| 135 | +**Second Equation** |
| 136 | +$$ |
| 137 | +\iint_{\partial \Omega} \mathbf B \cdot d \mathbf s = 0 |
| 138 | +$$ |
| 139 | +**Third Equation** |
| 140 | +$$ |
| 141 | +\int_{\partial\Sigma} \mathbf E \cdot d \mathbf l = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s |
| 142 | +$$ |
| 143 | +**Fourth Equation** |
| 144 | +$$ |
| 145 | +\int_{\partial \Sigma} \mathbf B \cdot d \mathbf l = \mu_0 \left( \iint_{\Sigma} \mathbf j \cdot d \mathbf s + \varepsilon_0 \; \partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s \right) |
| 146 | +$$ |
| 147 | + |
| 148 | +## In Empty Space |
| 149 | + |
| 150 | +$\nabla \cdot \mathbf E = 0$ |
| 151 | + |
| 152 | +$\nabla \cdot \mathbf B = 0$ |
| 153 | + |
| 154 | +$\nabla \times \mathbf E = - \partial_t \mathbf B$ |
| 155 | + |
| 156 | +$\nabla \times \mathbf B = \mu_0 \varepsilon_0 \; \partial_t \mathbf E$ |
| 157 | + |
| 158 | + |
| 159 | +## Notation |
| 160 | + |
| 161 | +Here are some remarks on the notation used that may be useful : |
| 162 | + |
| 163 | +$\partial_t \mathbf F$ is $\frac{d\mathbf F}{dt}$ |
| 164 | + |
| 165 | +$\nabla \cdot F$ is the divergence of $F$ |
| 166 | + |
| 167 | +$\nabla \times F$ is the curl (rotationel) of $F$ |
| 168 | + |
| 169 | +### Divergence Theorem |
| 170 | +In 2 dimensions (useless here) |
| 171 | +$$ |
| 172 | +\iint_{\Sigma} \nabla \cdot F \; ds = \int_{\partial \Sigma} \langle F, \nu \rangle \; dl |
| 173 | +$$ |
| 174 | +In 3 dimensions |
| 175 | +$$ |
| 176 | +\iiint_{\Omega} \nabla \cdot F \; dV = \iint_{\partial \Omega} \langle F, \nu \rangle \; ds |
| 177 | +$$ |
| 178 | +$\nu$ is the outwards pointing unit normal at each point on the boundary |
| 179 | + |
| 180 | +$\langle F, \nu \rangle \; ds = F \cdot (\nu \; ds) = F \cdot d\mathbf s$ |
| 181 | + |
| 182 | +If we use a surface $S$ such that the normal to the surface is either perpendicular or parallel to $F$ : |
| 183 | +- The perpendicular parts have zero flux through the surface |
| 184 | +- The parallel parts have a flux through the surface simply equal to their value ($\mathbf F \cdot d\mathbf s$ becomes $F \; ds$) |
| 185 | + |
| 186 | +### Stoke's Theorem |
| 187 | +$$ |
| 188 | +\iint_{\Sigma} \nabla \times F \; ds = \int_{\partial \Sigma} F \cdot dl |
| 189 | +$$ |
| 190 | + |
| 191 | +### Constants and Variables |
| 192 | + |
| 193 | +$\mathbf E$ : electric field |
| 194 | + |
| 195 | +$\mathbf B$ : magnetic field |
| 196 | + |
| 197 | +$\rho$ : electric charge density (total charge per unit volume) |
| 198 | + |
| 199 | +$\mathbf j$ : current density (total current per unit area) |
| 200 | + |
| 201 | + |
| 202 | +$Q$ : total electric charge |
| 203 | + |
| 204 | +$$ |
| 205 | +Q = \iiint_{\Omega} \rho \; dV |
| 206 | +$$ |
| 207 | + |
| 208 | +$I$ : net electric current |
| 209 | + |
| 210 | +$\mathcal{E}$ : emf (electromotive force) |
| 211 | + |
| 212 | +$I_{\text{encl}}$ : total current through the loop |
| 213 | + |
| 214 | +$\varepsilon_0$ : permittivity of free space |
| 215 | + |
| 216 | +$\mu_0$ : permeability of free space |
| 217 | + |
| 218 | +$k_e$ : Coulomb constant |
| 219 | + |
| 220 | +$$ |
| 221 | +k_e = \frac{1}{4 \pi \varepsilon_0} |
| 222 | +$$ |
| 223 | +$k_M$ : Magic constant |
| 224 | +$$ |
| 225 | +k_M = \frac{\mu_0}{4 \pi} |
| 226 | +$$ |
| 227 | +$$ |
| 228 | +\frac{k_M}{k_e} = \frac{1}{c^2} = \mu_0 \varepsilon_0 |
| 229 | +$$ |
| 230 | + |
| 231 | +$\Omega$ : any volume with closed boundary surface $\partial \Omega$ |
| 232 | + |
| 233 | +$\Sigma$ : any surface with closed boundary curve $\partial \Sigma$ |
| 234 | + |
| 235 | +<Callout type="note"> |
| 236 | + All integrals $\int_{\partial \Sigma}$ and $\iint_{\partial \Omega}$ could have been written using the loop notation $\oint$, which indicates a **closed** boundary (curve or surface). |
| 237 | + Indeed all boundaries of $\Omega$ and $\Sigma$ in this document are **closed** boundaries |
| 238 | +</Callout> |
0 commit comments