Skip to content

Commit aecb941

Browse files
feat: publish maxwell equations
1 parent 13e5f8a commit aecb941

File tree

1 file changed

+238
-0
lines changed

1 file changed

+238
-0
lines changed

content/share/maxwell-equations.mdx

+238
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,238 @@
1+
---
2+
title: Maxwell's Equations
3+
description: A quick cheatsheet on Maxwell's Equations. Written as part of my notes for the PHYS-114 Course @ EPFL
4+
date: 2023-01-05
5+
tags: [epfl, electromagnetism]
6+
published: true
7+
---
8+
9+
# Maxwell's Equations
10+
11+
<Callout type="note">
12+
This document is a quick cheatsheet on Maxwell's Equations.
13+
It is not meant to be a comprehensive guide, but rather a quick reference, based on my notes from the EPFL's [PHYS-114 Course](https://edu.epfl.ch/coursebook/fr/physique-generale-electromagnetisme-PHYS-114) on Electromagnetism.
14+
</Callout>
15+
16+
## Deriving the Equations
17+
18+
### First Equation
19+
20+
Gauss's Law (Electric flux through a closed surface)
21+
22+
$$
23+
\Phi_E = \frac{Q}{\varepsilon_0}
24+
$$
25+
26+
$$
27+
\iint_{\partial \Omega} \mathbf E \cdot d \mathbf s = \frac{Q}{\varepsilon_0} = 4 \pi k_e Q
28+
$$
29+
30+
$$
31+
\iint_{\partial \Omega} \mathbf E \cdot d \mathbf s = 4\pi k_e \iiint_{\Omega} \rho \; dV
32+
$$
33+
34+
Using the Divergence Theorem :
35+
36+
$$
37+
\iiint_{\Omega} \nabla \cdot \mathbf E \; dV = 4\pi k_e \iiint_{\Omega} \rho \; dV
38+
$$
39+
$$
40+
\nabla \cdot \mathbf E = 4\pi k_e \rho
41+
$$
42+
$$
43+
\nabla \cdot \mathbf E = \frac{\rho}{\varepsilon_0}
44+
$$
45+
46+
### Second Equation
47+
48+
Gauss's Law for Magnetism (Magnetic flux through a closed surface)
49+
$$
50+
\Phi_B = \iint_{\partial \Omega} \mathbf B \cdot d \mathbf s
51+
$$
52+
$$
53+
\iint_{\partial \Omega} \mathbf B \cdot d \mathbf s = 0
54+
$$
55+
Using the Divergence Theorem :
56+
$$
57+
\iiint_{\Omega} \nabla \cdot \mathbf B \; dV = 0
58+
$$
59+
$$
60+
\nabla \cdot \mathbf B = 0
61+
$$
62+
63+
This is equivalent to saying :
64+
- Magnetic monopoles / charges do not exist (base entity is the dipole)
65+
- Magnetic field lines have neither a beginning nor an end
66+
67+
### Third Equation
68+
69+
Faraday's Law (electromotive force, emf)
70+
$$
71+
\mathcal{E} = - \partial_t \Phi_B
72+
$$
73+
$$
74+
\mathcal{E} = \int_{\partial\Sigma} \mathbf E \cdot d \mathbf l = - \partial_t \Phi_B = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s
75+
$$
76+
$$
77+
\int_{\partial\Sigma} \mathbf E \cdot d \mathbf l = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s
78+
$$
79+
80+
Using Stokes Theorem :
81+
$$
82+
\iint_{\Sigma} \nabla \times \mathbf E \; d \mathbf s = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s
83+
$$
84+
$$
85+
\nabla \times \mathbf E = - \partial_t \mathbf B
86+
$$
87+
88+
Faraday's Law :
89+
90+
The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path.
91+
92+
### Fourth Equation
93+
94+
Ampere's Law
95+
$$
96+
\int_{\partial \Sigma} \mathbf B \cdot d \mathbf l = \mu_0 I_{\text{encl}} = \mu_0 \iint_{\Sigma} \mathbf j \cdot d \mathbf s
97+
$$
98+
Maxwell's equation has the following component added to it :
99+
$$
100+
\mu_0 \varepsilon_0 \;\partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s$$
101+
$$\int_{\partial \Sigma} \mathbf B \cdot d \mathbf l = \mu_0 \left( \iint_{\Sigma} \mathbf j \cdot d \mathbf s + \varepsilon_0 \; \partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s \right)
102+
$$
103+
104+
Using Stoke's Theorem :
105+
$$
106+
\iint_{\Sigma} \nabla \times \mathbf B \; d \mathbf s = \mu_0 \left( \iint_{\Sigma} \mathbf j \cdot d \mathbf s + \varepsilon_0 \;\partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s \right)
107+
$$
108+
$$
109+
\nabla \times \mathbf B = \mu_0 \left( \mathbf j + \varepsilon_0 \; \partial_t \mathbf E\right)
110+
$$
111+
112+
Ampère's Law :
113+
114+
The original law states that magnetic fields relate to electric current, Maxwell's addition states that they also relate to changing electric fields
115+
116+
Note :
117+
$\mu_0 = 4 \pi k_M$
118+
119+
## Differential Forms
120+
121+
$\nabla \cdot \mathbf E = \frac{\rho}{\varepsilon_0}$
122+
123+
$\nabla \cdot \mathbf B = 0$
124+
125+
$\nabla \times \mathbf E = - \partial_t \mathbf B$
126+
127+
$\nabla \times \mathbf B = \mu_0 \left( \mathbf j + \varepsilon_0 \; \partial_t \mathbf E\right)$
128+
129+
## Integral Forms
130+
131+
**First Equation**
132+
$$
133+
\iint_{\partial \Omega} \mathbf E \cdot d \mathbf s = \frac{1}{\varepsilon_0} \iiint_{\Omega} \rho \; dV = \frac{Q}{\varepsilon_0}
134+
$$
135+
**Second Equation**
136+
$$
137+
\iint_{\partial \Omega} \mathbf B \cdot d \mathbf s = 0
138+
$$
139+
**Third Equation**
140+
$$
141+
\int_{\partial\Sigma} \mathbf E \cdot d \mathbf l = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s
142+
$$
143+
**Fourth Equation**
144+
$$
145+
\int_{\partial \Sigma} \mathbf B \cdot d \mathbf l = \mu_0 \left( \iint_{\Sigma} \mathbf j \cdot d \mathbf s + \varepsilon_0 \; \partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s \right)
146+
$$
147+
148+
## In Empty Space
149+
150+
$\nabla \cdot \mathbf E = 0$
151+
152+
$\nabla \cdot \mathbf B = 0$
153+
154+
$\nabla \times \mathbf E = - \partial_t \mathbf B$
155+
156+
$\nabla \times \mathbf B = \mu_0 \varepsilon_0 \; \partial_t \mathbf E$
157+
158+
159+
## Notation
160+
161+
Here are some remarks on the notation used that may be useful :
162+
163+
$\partial_t \mathbf F$ is $\frac{d\mathbf F}{dt}$
164+
165+
$\nabla \cdot F$ is the divergence of $F$
166+
167+
$\nabla \times F$ is the curl (rotationel) of $F$
168+
169+
### Divergence Theorem
170+
In 2 dimensions (useless here)
171+
$$
172+
\iint_{\Sigma} \nabla \cdot F \; ds = \int_{\partial \Sigma} \langle F, \nu \rangle \; dl
173+
$$
174+
In 3 dimensions
175+
$$
176+
\iiint_{\Omega} \nabla \cdot F \; dV = \iint_{\partial \Omega} \langle F, \nu \rangle \; ds
177+
$$
178+
$\nu$ is the outwards pointing unit normal at each point on the boundary
179+
180+
$\langle F, \nu \rangle \; ds = F \cdot (\nu \; ds) = F \cdot d\mathbf s$
181+
182+
If we use a surface $S$ such that the normal to the surface is either perpendicular or parallel to $F$ :
183+
- The perpendicular parts have zero flux through the surface
184+
- The parallel parts have a flux through the surface simply equal to their value ($\mathbf F \cdot d\mathbf s$ becomes $F \; ds$)
185+
186+
### Stoke's Theorem
187+
$$
188+
\iint_{\Sigma} \nabla \times F \; ds = \int_{\partial \Sigma} F \cdot dl
189+
$$
190+
191+
### Constants and Variables
192+
193+
$\mathbf E$ : electric field
194+
195+
$\mathbf B$ : magnetic field
196+
197+
$\rho$ : electric charge density (total charge per unit volume)
198+
199+
$\mathbf j$ : current density (total current per unit area)
200+
201+
202+
$Q$ : total electric charge
203+
204+
$$
205+
Q = \iiint_{\Omega} \rho \; dV
206+
$$
207+
208+
$I$ : net electric current
209+
210+
$\mathcal{E}$ : emf (electromotive force)
211+
212+
$I_{\text{encl}}$ : total current through the loop
213+
214+
$\varepsilon_0$ : permittivity of free space
215+
216+
$\mu_0$ : permeability of free space
217+
218+
$k_e$ : Coulomb constant
219+
220+
$$
221+
k_e = \frac{1}{4 \pi \varepsilon_0}
222+
$$
223+
$k_M$ : Magic constant
224+
$$
225+
k_M = \frac{\mu_0}{4 \pi}
226+
$$
227+
$$
228+
\frac{k_M}{k_e} = \frac{1}{c^2} = \mu_0 \varepsilon_0
229+
$$
230+
231+
$\Omega$ : any volume with closed boundary surface $\partial \Omega$
232+
233+
$\Sigma$ : any surface with closed boundary curve $\partial \Sigma$
234+
235+
<Callout type="note">
236+
All integrals $\int_{\partial \Sigma}$ and $\iint_{\partial \Omega}$ could have been written using the loop notation $\oint$, which indicates a **closed** boundary (curve or surface).
237+
Indeed all boundaries of $\Omega$ and $\Sigma$ in this document are **closed** boundaries
238+
</Callout>

0 commit comments

Comments
 (0)