-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·93 lines (73 loc) · 4.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
import pandas as pd
from utils import compute_inputs, compute_outputs, f1_macro
import tensorflow as tf
import tensorflow.keras.backend as K
from importlib import import_module
from sklearn.model_selection import StratifiedKFold
from sklearn.utils import shuffle
import argparse
parser = argparse.ArgumentParser(description='nCov sentiment Classification')
parser.add_argument('--model', default='BERT_base', type=str, help='choose a model: BERT_base, ROBERTA_large')
parser.add_argument('--use_multi_gpu', default=False, type=bool, help='if True use multiple gpu for training')
parser.add_argument('--use_pl', default=True, type=bool, help='when True you should set the path of pseudo label')
args = parser.parse_args()
model_name = args.model
# import the config with model
x = import_module('models.'+model_name)
config = x.Config(pl=args.use_pl)
print(config.bert_path)
# handel the data for model inputs
df_train = pd.read_csv(config.train_data_path, engine='python', encoding='utf-8')
df_train = df_train[df_train[config.output_categories].isin(config.labels)]
if config.n_sample:
df_train = df_train.sample(config.n_sample)
df_test = pd.read_csv(config.test_data_path, engine='python', encoding='utf-8')
inputs, outputs = compute_inputs(df_train, config), compute_outputs(df_train, config)
test_inputs = compute_inputs(df_test, config)
# generate kfold data for pseudo labeling
pl_train_idxs = []
if config.pl_data_path:
df_pl = pd.read_csv(config.pl_data_path, engine='python', encoding='utf-8')
pl_inputs, pl_outputs = compute_inputs(df_pl, config), compute_outputs(df_pl, config)
pl_gkf = StratifiedKFold(n_splits=config.num_of_fold).split(X=df_pl[config.input_categories].fillna('-1'),
y=df_pl[config.output_categories].fillna('-1'))
for fold, (train_id, valid_id) in enumerate(pl_gkf):
pl_train_idxs.append(train_id)
skf = StratifiedKFold(n_splits=config.num_of_fold).split(X=df_train[config.input_categories].fillna('-1'),
y=df_train[config.output_categories].fillna('-1'))
valid_oof = np.zeros_like(outputs)
test_oof = []
for fold, (train_idx, valid_idx) in enumerate(skf):
if not pl_train_idxs: # if don't use pseudo labeling
train_inputs = [inputs[i][train_idx] for i in range(len(inputs))]
train_outputs = outputs[train_idx]
else: # make sure psedudo labeling data in training set, concat and shuffle
pl_train_idx = pl_train_idxs[fold]
train_inputs = [np.concatenate([inputs[i][train_idx], pl_inputs[i][pl_train_idx]]) for i in range(len(inputs))]
train_outputs = np.concatenate([outputs[train_idx], pl_outputs[pl_train_idx]])
shuffled_data = shuffle(*train_inputs, train_outputs)
train_inputs = shuffled_data[:-1]
train_outputs = shuffled_data[-1]
valid_inputs = [inputs[i][valid_idx] for i in range(len(inputs))]
valid_outputs = outputs[valid_idx]
optimizer = tf.keras.optimizers.Adam(learning_rate=config.learning_rate)
K.clear_session()
if bool(args.use_multi_gpu): # use multiple gpu
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = x.SentimentClfModel(config)
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy', f1_macro])
else: # use single gpu
model = x.SentimentClfModel(config)
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy', f1_macro])
model.fit(train_inputs, train_outputs,
validation_data=[valid_inputs, valid_outputs],
epochs=config.num_epochs, batch_size=config.train_batch_size)
model.save_weights(f'{config.model_name}_{fold}.h5')
valid_oof[valid_idx] = model.predict(valid_inputs, config.test_batch_size)
test_oof.append(model.predict(test_inputs, config.test_batch_size))
sub = np.average(test_oof, axis=0)
np.save(f'{config.model_name}_pred_proba.npy', sub)
np.save(f'{config.model_name}_valid_oof.npy', valid_oof)
np.save(f'{config.model_name}_outputs.npy', outputs)