@@ -120,7 +120,7 @@ fn bench_alexnet() {
120
120
#[ cfg( all( feature="cuda" , not( feature="native" ) ) ) ]
121
121
fn bench_alexnet ( ) {
122
122
let mut cfg = SequentialConfig :: default ( ) ;
123
- cfg. add_input ( "data" , & vec ! [ 128 , 3 , 224 , 224 ] ) ;
123
+ cfg. add_input ( "data" , & [ 128 , 3 , 224 , 224 ] ) ;
124
124
125
125
let conv1_layer_cfg = ConvolutionConfig { num_output : 64 , filter_shape : vec ! [ 11 ] , padding : vec ! [ 2 ] , stride : vec ! [ 4 ] } ;
126
126
cfg. add_layer ( LayerConfig :: new ( "conv1" , conv1_layer_cfg) ) ;
@@ -160,7 +160,7 @@ fn bench_alexnet() {
160
160
let func = || {
161
161
let forward_time = timeit_loops ! ( 1 , {
162
162
{
163
- let inp = SharedTensor :: <f32 >:: new( backend. device( ) , & vec! [ 128 , 3 , 224 , 224 ] ) . unwrap( ) ;
163
+ let inp = SharedTensor :: <f32 >:: new( backend. device( ) , & [ 128 , 3 , 224 , 224 ] ) . unwrap( ) ;
164
164
165
165
let inp_lock = Arc :: new( RwLock :: new( inp) ) ;
166
166
network. forward( & [ inp_lock. clone( ) ] ) ;
@@ -202,7 +202,7 @@ fn bench_overfeat() {
202
202
#[ cfg( all( feature="cuda" , not( feature="native" ) ) ) ]
203
203
fn bench_overfeat ( ) {
204
204
let mut cfg = SequentialConfig :: default ( ) ;
205
- cfg. add_input ( "data" , & vec ! [ 128 , 3 , 231 , 231 ] ) ;
205
+ cfg. add_input ( "data" , & [ 128 , 3 , 231 , 231 ] ) ;
206
206
207
207
let conv1_layer_cfg = ConvolutionConfig { num_output : 96 , filter_shape : vec ! [ 11 ] , padding : vec ! [ 0 ] , stride : vec ! [ 4 ] } ;
208
208
cfg. add_layer ( LayerConfig :: new ( "conv1" , conv1_layer_cfg) ) ;
@@ -242,7 +242,7 @@ fn bench_overfeat() {
242
242
let func = || {
243
243
let forward_time = timeit_loops ! ( 1 , {
244
244
{
245
- let inp = SharedTensor :: <f32 >:: new( backend. device( ) , & vec! [ 128 , 3 , 231 , 231 ] ) . unwrap( ) ;
245
+ let inp = SharedTensor :: <f32 >:: new( backend. device( ) , & [ 128 , 3 , 231 , 231 ] ) . unwrap( ) ;
246
246
247
247
let inp_lock = Arc :: new( RwLock :: new( inp) ) ;
248
248
network. forward( & [ inp_lock. clone( ) ] ) ;
@@ -284,7 +284,7 @@ fn bench_vgg_a() {
284
284
#[ cfg( all( feature="cuda" , not( feature="native" ) ) ) ]
285
285
fn bench_vgg_a ( ) {
286
286
let mut cfg = SequentialConfig :: default ( ) ;
287
- cfg. add_input ( "data" , & vec ! [ 64 , 3 , 224 , 224 ] ) ;
287
+ cfg. add_input ( "data" , & [ 64 , 3 , 224 , 224 ] ) ;
288
288
289
289
let conv1_layer_cfg = ConvolutionConfig { num_output : 64 , filter_shape : vec ! [ 3 ] , padding : vec ! [ 1 ] , stride : vec ! [ 1 ] } ;
290
290
cfg. add_layer ( LayerConfig :: new ( "conv1" , conv1_layer_cfg) ) ;
@@ -339,7 +339,7 @@ fn bench_vgg_a() {
339
339
let func = || {
340
340
let forward_time = timeit_loops ! ( 1 , {
341
341
{
342
- let inp = SharedTensor :: <f32 >:: new( backend. device( ) , & vec! [ 64 , 3 , 224 , 224 ] ) . unwrap( ) ;
342
+ let inp = SharedTensor :: <f32 >:: new( backend. device( ) , & [ 64 , 3 , 224 , 224 ] ) . unwrap( ) ;
343
343
344
344
let inp_lock = Arc :: new( RwLock :: new( inp) ) ;
345
345
network. forward( & [ inp_lock. clone( ) ] ) ;
0 commit comments