-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdensenet121.py
36 lines (28 loc) · 1.14 KB
/
densenet121.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import lib
from tensorflow.keras.applications.densenet import DenseNet121
from tensorflow.keras.applications.densenet import preprocess_input
dataset = '/storage/deepfire/subsampledDatasets/forestOnly-1'
output_pdf = True
output_statistics = False
image_size = 224
model_name = 'densenet121'
hidden_layers = [30]
num_classes = 2
batch_size = 32
epochs = 5
# Multiclass Settings
# dataset = '/storage/deepfire/subsampledDatasets/forest-1-smoke-fire-forest' # Name of the folder in /storage/deepfire/subsampledDatasets
# num_classes = 3
def main():
baseModel = DenseNet121(
include_top=False, pooling='avg', weights='imagenet')
fire_detector_model = lib.createModel(
baseModel, hidden_layers, num_classes)
history = lib.trainModel(dataset, fire_detector_model,
epochs, batch_size, image_size, preprocess_input)
lib.create_pdf(history, model_name)
lib.testModel(fire_detector_model, batch_size, dataset,
num_classes, model_name, image_size, preprocess_input, output_statistics)
fire_detector_model.save(f'saved_models/{model_name}.h5')
if __name__ == "__main__":
main()