-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathinference_global_optimization_batch.py
459 lines (390 loc) · 23.6 KB
/
inference_global_optimization_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
# Copyright (C) 2025-present Meta Platforms, Inc. and affiliates. All rights reserved.
# Licensed under CC BY-NC 4.0 (non-commercial use only).
import argparse
import datetime
import json
import numpy as np
import os
import sys
import time
import math
from collections import defaultdict
from pathlib import Path
from typing import Sized
import imageio
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__)))
if 'META_INTERNAL' in os.environ.keys() and os.environ['META_INTERNAL'] == "False":
generate_html = None
from dust3r.dummy_io import *
else:
from meta_internal.io import *
from meta_internal.html_gen.run_model_doctor import generate_html
from dust3r.model import AsymmetricCroCo3DStereo, AsymmetricCroCo3DStereoMultiView, inf
import dust3r.utils.path_to_croco # noqa: F401
from dust3r.datasets import get_data_loader # noqa
from dust3r.losses import * # noqa: F401, needed when loading the model
from dust3r.inference import loss_of_one_batch # noqa
from inference_global_optimization import loss_of_one_batch_go_mv # noqa
from dust3r.pcd_render import pcd_render, save_image_manifold, save_video_combined
from dust3r.gs import gs_render
from dust3r.utils.geometry import inv, geotrf
import dust3r.utils.path_to_croco # noqa: F401
import croco.utils.misc as misc # noqa
from croco.utils.misc import NativeScalerWithGradNormCount as NativeScaler # noqa
def get_args_parser():
parser = argparse.ArgumentParser('DUST3R training', add_help=False)
# model and criterion
parser.add_argument('--model', default="AsymmetricCroCo3DStereo(patch_embed_cls='ManyAR_PatchEmbed')",
type=str, help="string containing the model to build")
parser.add_argument('--pretrained', default=None, help='path of a starting checkpoint')
parser.add_argument('--train_criterion', default="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)",
type=str, help="train criterion")
parser.add_argument('--test_criterion', default=None, type=str, help="test criterion")
# dataset
parser.add_argument('--train_dataset', required=True, type=str, help="training set")
parser.add_argument('--test_dataset', default='[None]', type=str, help="testing set")
# training
parser.add_argument('--seed', default=0, type=int, help="Random seed")
parser.add_argument('--batch_size', default=64, type=int,
help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus")
parser.add_argument('--accum_iter', default=1, type=int,
help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)")
parser.add_argument('--epochs', default=800, type=int, help="Maximum number of epochs for the scheduler")
parser.add_argument('--weight_decay', type=float, default=0.05, help="weight decay (default: 0.05)")
parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR')
parser.add_argument('--amp', type=int, default=0,
choices=[0, 1], help="Use Automatic Mixed Precision for pretraining")
# others
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--eval_freq', type=int, default=1, help='Test loss evaluation frequency')
parser.add_argument('--save_freq', default=1, type=int,
help='frequence (number of epochs) to save checkpoint in checkpoint-last.pth')
parser.add_argument('--keep_freq', default=20, type=int,
help='frequence (number of epochs) to save checkpoint in checkpoint-%d.pth')
parser.add_argument('--print_freq', default=20, type=int,
help='frequence (number of iterations) to print infos while training')
# output dir
parser.add_argument('--output_dir', default=None, type=str, help="path where to save the output")
return parser
def main(args):
print('args', args)
misc.init_distributed_mode(args)
global_rank = misc.get_rank()
world_size = misc.get_world_size()
real_batch_size = args.batch_size * world_size
print('world size', world_size, 'global_rank', global_rank, 'real_batch_size', real_batch_size)
set_device(args.gpu)
args.output_dir = get_log_dir_warp(args.output_dir)
print("output_dir: "+args.output_dir) # manifold://ondevice_ai_writedata/tree/zgtang/dust3r/logs/torchx-dust3r_train-temp3
if args.output_dir:
g_pathmgr.mkdirs(args.output_dir)
# auto resume
last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth')
args.resume = last_ckpt_fname if g_pathmgr.isfile(last_ckpt_fname) else None
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
# fix the seed
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# training dataset and loader
print('Building train dataset {:s}'.format(args.train_dataset))
# dataset and loader
# data_loader_train = build_dataset(args.train_dataset, args.batch_size, args.num_workers, test=False)
# train_epoch_size = real_batch_size * len(data_loader_train)
train_epoch_size = real_batch_size * 100000
print('Building test dataset {:s}'.format(args.test_dataset))
data_loader_test = {}
for dataset_name in args.test_dataset.split('+'):
dataset = build_dataset(dataset_name, args.batch_size, args.num_workers, test=True)
dataset_name = dataset.dataset.tb_name
data_loader_test[dataset_name] = dataset
# data_loader_test = {dataset.split('(')[0]: build_dataset(dataset, args.batch_size, args.num_workers, test=True)
# for dataset in args.test_dataset.split('+')}
# model
print('Loading model: {:s}'.format(args.model))
model = eval(args.model) #
model_name = args.model.split('(')[0]
print(f'>> Creating train criterion = {args.train_criterion}')
train_criterion = eval(args.train_criterion).to(device) # ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)
print(f'>> Creating test criterion = {args.test_criterion or args.train_criterion}')
test_criterion = eval(args.test_criterion or args.criterion).to(device)
model.to(device)
model_without_ddp = model
print("Model = %s" % str(model_without_ddp))
if args.pretrained and not args.resume:
model_loaded = eval(model_name).from_pretrained(get_local_path(args.pretrained)).to(device)
print('Loading pretrained: ', args.pretrained, model_name) #
state_dict_loaded = model_loaded.state_dict()
model.load_state_dict(state_dict_loaded, strict=False)
model_without_ddp = model
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True)
model_without_ddp = model.module
total_params = sum(p.numel() for p in model_without_ddp.parameters())
print(f'Total number of parameters: {total_params}') # 0.5B
# following timm: set wd as 0 for bias and norm layers
def write_log_stats(epoch, train_stats, test_stats):
if misc.is_main_process():
if log_writer is not None:
log_writer.flush()
log_stats = dict(epoch=epoch, **{f'train_{k}': v for k, v in train_stats.items()})
for test_name in data_loader_test:
if test_name not in test_stats:
continue
log_stats.update({test_name+'_'+k: v for k, v in test_stats[test_name].items()})
with g_pathmgr.open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
if global_rank == 0 and args.output_dir is not None:
log_writer = SummaryWriter(log_dir=args.output_dir)
else:
log_writer = None
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
train_stats = test_stats = {}
epoch = 0
test_stats = {}
test_set_id = -1
for test_name, testset in data_loader_test.items():
test_set_id += 1
t_test = time.time()
print('test name', test_name)
stats = test_one_epoch(model, test_criterion, testset,
device, epoch, train_epoch_size, log_writer=log_writer, args=args, prefix=test_name, test_set_id = test_set_id)
test_stats[test_name] = stats
print('test epoch time', time.time() - t_test)
# Save more stuff
write_log_stats(epoch, train_stats, test_stats)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
def build_dataset(dataset, batch_size, num_workers, test=False):
split = ['Train', 'Test'][test]
print(f'Building {split} Data loader for dataset: ', dataset)
loader = get_data_loader(dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_mem=True,
shuffle=not (test),
drop_last=not (test))
print(f"{split} dataset length: ", len(loader))
return loader
def save_results(loss_and_others, batch, name_list, args):
all_info = loss_and_others
other_info = loss_and_others['loss'][1]
# view1: img (real_bs * 2 (data aug for symmetry), 3, res=224, res), depthmap, camera_pose (real_bs * 2, 4, 4), camera_intrinsics, dataset, label, instance, idx, true_shape, pts3d (real_bs * 2, res, res, 3), valid_mask, rng
# pred1: pts3d, conf
# pred2: pts3d_in_other_view, conf
g_pathmgr.mkdirs(args.output_dir + '/results')
g_pathmgr.mkdirs(args.output_dir + '/videos')
bs = all_info['view1']['img'].shape[0] # real_bs * 2 = bs
if 'view2s' in all_info.keys(): # MV here
for img_id in range(bs):
img_id_mref_first = img_id
n_ref = 1
# img_id_mref_first = n_ref * img_id
label = batch[0]['label'][img_id // n_ref]
name = "_".join(name_list[0:1] + [label] + name_list[1:])
rgb1 = all_info['view1']['img'][img_id].permute(1,2,0)
valid_mask1 = all_info['view1']['valid_mask'][img_id].reshape(-1)
num_render_views = all_info['view2s'][0].get("num_render_views", torch.zeros([0]).long())[0].item()
rgb2s_all = [x['img'][img_id].permute(1,2,0) for x in all_info['view2s']]
valid_mask2s = [x['valid_mask'][img_id].reshape(-1) for x in all_info['view2s']]
rgb2s = rgb2s_all[:-num_render_views] if num_render_views else rgb2s_all
valid_mask2s = valid_mask2s[:-num_render_views] if num_render_views else valid_mask2s
rgb = torch.cat([rgb1.reshape(-1, 3)] + [rgb2.reshape(-1, 3) for rgb2 in rgb2s], 0)
valid_masks = torch.stack([valid_mask1] + valid_mask2s, 0)
pts3d_gt = torch.cat([all_info['view1']['pts3d'][img_id].reshape(-1, 3)] + [x['pts3d'][img_id].reshape(-1, 3) for x in (all_info['view2s'][:-num_render_views] if num_render_views else all_info['view2s'])], 0)
pts3d = torch.cat([all_info['pred1']['pts3d'][img_id_mref_first].reshape(-1, 3)] + [x['pts3d_in_other_view'][img_id_mref_first].reshape(-1, 3) for x in all_info['pred2s']], 0)
conf = torch.cat([all_info['pred1']['conf'][img_id_mref_first].reshape(-1, 1)] + [x['conf'][img_id_mref_first].reshape(-1, 1) for x in all_info['pred2s']], 0)
conf_sorted = conf.reshape(-1).sort()[0]
conf_thres = float(conf_sorted[int(conf.shape[0] * 0.03)])
# conf_thres = 0.5
cam1 = all_info['view1']['camera_pose'][img_id] # c2w
pts3d = geotrf(cam1, pts3d) # B,H,W,3
# img_id_name = str(img_id).zfill(3)
# import fbvscode
# fbvscode.set_trace()
img_id_name = f"nref_{img_id % n_ref}_{str(time.time()).split('.')[1]}"
video_pcd_gt = pcd_render(pts3d_gt, rgb, tgt = None, normalize = True)
video_pcd = pcd_render(pts3d , rgb, tgt = None, normalize = True)
# video_pcd_conf = video_pcd
video_pcd_conf = pcd_render(pts3d , rgb, tgt = None, normalize = True, mask = conf > conf_thres * valid_masks.reshape(-1, 1)) # log(3)
# print('vis conf range', conf.min(), conf.mean(), conf.max(), conf_thres, (conf < 1.02).float().mean(), (conf < 1.03).float().mean(), (conf < 1.06).float().mean(), (conf < 1.09).float().mean())
save_video_combined([video_pcd, video_pcd_conf, video_pcd_gt], f"{args.output_dir}/videos/{name}_{img_id_name}_and_gt.mp4")
if 'scale' in all_info['pred1'].keys(): # 3DGS predicted
gts = [all_info['view1']] + [v for v in (all_info['view2s'][:-num_render_views] if num_render_views else all_info['view2s'])]
preds = [all_info['pred1']] + [v for v in all_info['pred2s']]
video_gs_gt = gs_render(gts, preds, img_id, img_id_mref_first, cam1, normalize = True, gt_pcd = True, gt_img = True)
video_gs_gt_img_only = gs_render(gts, preds, img_id, img_id_mref_first, cam1, normalize = True, gt_pcd = False, gt_img = True)
video_gs = gs_render(gts, preds, img_id, img_id_mref_first, cam1, normalize = True)
save_video_combined([video_gs, video_gs_gt_img_only, video_gs_gt], f"{args.output_dir}/videos/{name}_{img_id_name}_and_gt_GS.mp4")
# import fbvscode
# fbvscode.set_trace()
other_info_web = {k: float(other_info[k][img_id_mref_first]) for k in other_info.keys() if "_list" in k}
torch.save(other_info_web, f"{args.output_dir}/videos/{name}_{img_id_name}.pth")
# rgb is -1~1, shape = (res,res,3)
rgbs = [rgb1]
save_image_manifold(((rgb1 + 1) / 2 * 255).cpu().numpy().astype(np.uint8), f"{args.output_dir}/videos/{name}_{img_id_name}_rgb1.png")
for rgb_id, rgb2 in enumerate(rgb2s_all):
rgbs.append(rgb2)
save_image_manifold(((rgb2 + 1) / 2 * 255).cpu().numpy().astype(np.uint8), f"{args.output_dir}/videos/{name}_{img_id_name}_rgb{rgb_id + 2}.png")
rgbs = torch.cat(rgbs, dim = 1) # [h,w (combine here),3]
save_image_manifold(((rgbs + 1) / 2 * 255).cpu().numpy().astype(np.uint8), f"{args.output_dir}/videos/{name}_{img_id_name}_rgb_all.png")
if "render_all" in other_info.keys():
render_all = other_info["render_all"] # render_all[img_id]: [nv, 224, 224, 3]
save_image_manifold(((render_all[img_id_mref_first].permute(1,0,2,3).flatten(1,2) + 1) / 2 * 255).cpu().numpy().astype(np.uint8), f"{args.output_dir}/videos/{name}_{img_id_name}_gs.png")
if "render_relocated_all" in other_info.keys():
render_relocated_all = other_info["render_relocated_all"] # render_all[img_id]: [nv, 224, 224, 3]
save_image_manifold(((render_relocated_all[img_id_mref_first].permute(1,0,2,3).flatten(1,2) + 1) / 2 * 255).cpu().numpy().astype(np.uint8), f"{args.output_dir}/videos/{name}_{img_id_name}_gs_relocated.png")
# for img_id in range(bs):
# label = batch[0]['label'][img_id]
# name = "_".join(name_list[0:1] + [label] + name_list[1:])
# rgb1 = all_info['view1']['img'][img_id].permute(1,2,0)
# rgb2s = [x['img'][img_id].permute(1,2,0) for x in all_info['view2s']]
# rgb = torch.cat([rgb1.reshape(-1, 3)] + [rgb2.reshape(-1, 3) for rgb2 in rgb2s], 0)
# pts3d_gt = torch.cat([all_info['view1']['pts3d'][img_id].reshape(-1, 3)] + [x['pts3d'][img_id].reshape(-1, 3) for x in all_info['view2s']], 0)
# pts3d = torch.cat([all_info['pred1']['pts3d'][img_id].reshape(-1, 3)] + [x['pts3d_in_other_view'][img_id].reshape(-1, 3) for x in all_info['pred2s']], 0)
# cam1 = all_info['view1']['camera_pose'][img_id] # c2w -> w2c
# pts3d = geotrf(cam1, pts3d) # B,H,W,3
# img_id_name = str(img_id).zfill(3)
# video_pcd_gt = pcd_render(pts3d_gt, rgb, tgt = None, normalize = True)
# video_pcd = pcd_render(pts3d , rgb, tgt = None, normalize = True)
# save_video_combined([video_pcd, video_pcd_gt], f"{args.output_dir}/videos/{name}_{img_id_name}_and_gt.mp4")
# other_info_web = {k: float(other_info[k][img_id]) for k in other_info.keys() if "_list" in k}
# torch.save(other_info_web, f"{args.output_dir}/videos/{name}_{img_id_name}.pth")
# # rgb is -1~1, shape = (res,res,3)
# rgbs = [rgb1]
# save_image_manifold(((rgb1 + 1) / 2 * 255).cpu().numpy().astype(np.uint8), f"{args.output_dir}/videos/{name}_{img_id_name}_rgb1.png")
# for rgb_id, rgb2 in enumerate(rgb2s):
# rgbs.append(rgb2)
# save_image_manifold(((rgb2 + 1) / 2 * 255).cpu().numpy().astype(np.uint8), f"{args.output_dir}/videos/{name}_{img_id_name}_rgb{rgb_id + 2}.png")
# rgbs = torch.cat(rgbs, dim = 1) # [h,w (combine here),3]
# save_image_manifold(((rgbs + 1) / 2 * 255).cpu().numpy().astype(np.uint8), f"{args.output_dir}/videos/{name}_{img_id_name}_rgb_all.png")
else:
raise NotImplementedError
def add_first_best(loss_details, n_ref):
# import fbvscode
# fbvscode.set_trace()
ldk = list(loss_details.keys())
for k in ldk:
if k == 'loss':
continue
if "_list" in k:
x_list = np.array(loss_details[k])
k_base = k.replace('_list', '')
x_list = x_list.reshape(-1, n_ref)
x_first = float(x_list[:, 0].mean())
x_best = float(np.max(x_list, axis = 1).mean())
if k_base+'_first' not in ldk:
loss_details[k_base+'_first'] = x_first
if k_base+'_best' not in ldk:
loss_details[k_base+'_best'] = x_best
return loss_details
def test_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Sized, device: torch.device, epoch: int,
train_epoch_size, args, log_writer=None, prefix='test', test_set_id = 0):
t_begin1 = -time.time()
model.eval()
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.meters = defaultdict(lambda: misc.SmoothedValue(window_size=9**9))
header = 'Test Epoch: [{}]'.format(epoch)
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
t_begin1 += time.time()
t_begin2 = -time.time()
if hasattr(data_loader, 'dataset') and hasattr(data_loader.dataset, 'set_epoch'):
print('set in dataset')
data_loader.dataset.set_epoch(epoch)
if hasattr(data_loader, 'sampler') and hasattr(data_loader.sampler, 'set_epoch'):
print('set in sampler')
data_loader.sampler.set_epoch(epoch)
t_begin2 += time.time()
t_batch = -time.time()
t_inference = 0
t_save = 0
t1_sum = 0.
t2_sum = 0.
for batch_id, batch in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
t = time.time()
torch.cuda.synchronize()
t_inference -= time.time()
# loss_and_others = loss_of_one_batch(batch, model, criterion, device,
# symmetrize_batch=True,
# use_amp=bool(args.amp), ret=None)
loss_and_others, t1, t2, n_v = loss_of_one_batch_go_mv(batch, model, criterion, device,
symmetrize_batch=True,
use_amp=bool(args.amp), ret=None)
t1_sum += t1
t2_sum += t2
print('GO time', t1_sum / (batch_id + 1), t2_sum / (batch_id + 1), n_v)
torch.cuda.synchronize()
t_inference += time.time()
print('test batch', batch_id, len(data_loader), 'time', time.time() - t, 'pts3d shape', batch[0]['pts3d'].shape)
t_save -= time.time()
print('data_loader', type(data_loader.dataset).__name__, batch[0]['label'][0])
if data_loader.dataset.save_results:
global_rank = misc.get_rank()
prefix_save = [str(epoch).zfill(5) + "_testSetID_" + str(test_set_id).zfill(3)]
save_results(loss_and_others, batch, prefix_save, args)
t_save += time.time()
loss_tuple = loss_and_others['loss']
loss_value, loss_details = loss_tuple # criterion returns two values
n_ref = int(loss_details['n_ref'])
loss_details.pop('n_ref')
loss_details = add_first_best(loss_details, n_ref)
for k in list(loss_details.keys()):
if not isinstance(loss_details[k], (float, int)):
loss_details.pop(k)
# import fbvscode
# fbvscode.set_trace()
metric_logger.update(loss=float(loss_value), **loss_details)
print('loss details', loss_details)
t_batch += time.time()
# gather the stats from all processes
t_log = - time.time()
if data_loader.dataset.save_results:
if generate_html is not None:
generate_html(args.output_dir + '/videos', args.output_dir + '/html')
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
aggs = [('avg', 'global_avg'), ('med', 'median')]
results = {f'{k}_{tag}': getattr(meter, attr) for k, meter in metric_logger.meters.items() for tag, attr in aggs}
if log_writer is not None:
for name, val in results.items():
# epoch_1000x = int(epoch * 1000)
epoch_1000x = int(epoch * train_epoch_size)
log_writer.add_scalar(prefix+'_'+name, val, epoch_1000x)
t_log += time.time()
print('test all time', prefix, 'batch', t_batch, t_batch - t_inference - t_save, 'inference', t_inference, 'save', t_save, 'log', t_log, 'two begins', t_begin1, t_begin2) # inference and log is small, batch is kind of large, but
# test all time 100 @ ScannetPair_test batch 70.40310192108154 inference 5.6025426387786865 save 0.0006468296051025391 log 0.0017290115356445312
# seems batch cost a lot of time, maybe from dataloading? testing now, inference is fast, save cost time in visualization but not torch.save, t_log and t_begin is fast.
return results
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
main(args)