-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGF2EXFactoring.txt
228 lines (149 loc) · 7.87 KB
/
GF2EXFactoring.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/**************************************************************************\
MODULE: GF2EXFactoring
SUMMARY:
Routines are provided for factorization of polynomials over GF2E, as
well as routines for related problems such as testing irreducibility
and constructing irreducible polynomials of given degree.
\**************************************************************************/
#include <NTL/GF2EX.h>
#include <NTL/pair_GF2EX_long.h>
void SquareFreeDecomp(vec_pair_GF2EX_long& u, const GF2EX& f);
vec_pair_GF2EX_long SquareFreeDecomp(const GF2EX& f);
// Performs square-free decomposition. f must be monic. If f =
// prod_i g_i^i, then u is set to a list of pairs (g_i, i). The list
// is is increasing order of i, with trivial terms (i.e., g_i = 1)
// deleted.
void FindRoots(vec_GF2E& x, const GF2EX& f);
vec_GF2E FindRoots(const GF2EX& f);
// f is monic, and has deg(f) distinct roots. returns the list of
// roots
void FindRoot(GF2E& root, const GF2EX& f);
GF2E FindRoot(const GF2EX& f);
// finds a single root of f. assumes that f is monic and splits into
// distinct linear factors
void SFBerlekamp(vec_GF2EX& factors, const GF2EX& f, long verbose=0);
vec_GF2EX SFBerlekamp(const GF2EX& f, long verbose=0);
// Assumes f is square-free and monic. returns list of factors of f.
// Uses "Berlekamp" approach, as described in detail in [Shoup,
// J. Symbolic Comp. 20:363-397, 1995].
void berlekamp(vec_pair_GF2EX_long& factors, const GF2EX& f,
long verbose=0);
vec_pair_GF2EX_long berlekamp(const GF2EX& f, long verbose=0);
// returns a list of factors, with multiplicities. f must be monic.
// Calls SFBerlekamp.
void NewDDF(vec_pair_GF2EX_long& factors, const GF2EX& f, const GF2EX& h,
long verbose=0);
vec_pair_GF2EX_long NewDDF(const GF2EX& f, const GF2EX& h,
long verbose=0);
// This computes a distinct-degree factorization. The input must be
// monic and square-free. factors is set to a list of pairs (g, d),
// where g is the product of all irreducible factors of f of degree d.
// Only nontrivial pairs (i.e., g != 1) are included. The polynomial
// h is assumed to be equal to X^{2^{GF2E::degree()}} mod f,
// which can be computed efficiently using the function FrobeniusMap
// (see below).
// This routine implements the baby step/giant step algorithm
// of [Kaltofen and Shoup, STOC 1995],
// further described in [Shoup, J. Symbolic Comp. 20:363-397, 1995].
// NOTE: When factoring "large" polynomials,
// this routine uses external files to store some intermediate
// results, which are removed if the routine terminates normally.
// These files are stored in the current directory under names of the
// form tmp-*.
// The definition of "large" is controlled by the variable
extern double GF2EXFileThresh
// which can be set by the user. If the sizes of the tables
// exceeds GF2EXFileThresh KB, external files are used.
// Initial value is NTL_FILE_THRESH (defined in tools.h).
void EDF(vec_GF2EX& factors, const GF2EX& f, const GF2EX& h,
long d, long verbose=0);
vec_GF2EX EDF(const GF2EX& f, const GF2EX& h,
long d, long verbose=0);
// Performs equal-degree factorization. f is monic, square-free, and
// all irreducible factors have same degree.
// h = X^{2^{GF2E::degree()}} mod f,
// which can be computed efficiently using the function FrobeniusMap
// (see below).
// d = degree of irreducible factors of f.
// This routine implements the algorithm of [von zur Gathen and Shoup,
// Computational Complexity 2:187-224, 1992]
void RootEDF(vec_GF2EX& factors, const GF2EX& f, long verbose=0);
vec_GF2EX RootEDF(const GF2EX& f, long verbose=0);
// EDF for d==1
void SFCanZass(vec_GF2EX& factors, const GF2EX& f, long verbose=0);
vec_GF2EX SFCanZass(const GF2EX& f, long verbose=0);
// Assumes f is monic and square-free. returns list of factors of f.
// Uses "Cantor/Zassenhaus" approach, using the routines NewDDF and
// EDF above.
void CanZass(vec_pair_GF2EX_long& factors, const GF2EX& f,
long verbose=0);
vec_pair_GF2EX_long CanZass(const GF2EX& f, long verbose=0);
// returns a list of factors, with multiplicities. f must be monic.
// Calls SquareFreeDecomp and SFCanZass.
// NOTE: these routines use modular composition. The space
// used for the required tables can be controlled by the variable
// GF2EXArgBound (see GF2EX.txt).
void mul(GF2EX& f, const vec_pair_GF2EX_long& v);
GF2EX mul(const vec_pair_GF2EX_long& v);
// multiplies polynomials, with multiplicities
/**************************************************************************\
Irreducible Polynomials
\**************************************************************************/
long ProbIrredTest(const GF2EX& f, long iter=1);
// performs a fast, probabilistic irreduciblity test. The test can
// err only if f is reducible, and the error probability is bounded by
// 2^{-iter*GF2E::degree()}. This implements an algorithm from [Shoup,
// J. Symbolic Comp. 17:371-391, 1994].
long DetIrredTest(const GF2EX& f);
// performs a recursive deterministic irreducibility test. Fast in
// the worst-case (when input is irreducible). This implements an
// algorithm from [Shoup, J. Symbolic Comp. 17:371-391, 1994].
long IterIrredTest(const GF2EX& f);
// performs an iterative deterministic irreducibility test, based on
// DDF. Fast on average (when f has a small factor).
void BuildIrred(GF2EX& f, long n);
GF2EX BuildIrred_GF2EX(long n);
// Build a monic irreducible poly of degree n.
void BuildRandomIrred(GF2EX& f, const GF2EX& g);
GF2EX BuildRandomIrred(const GF2EX& g);
// g is a monic irreducible polynomial. Constructs a random monic
// irreducible polynomial f of the same degree.
void FrobeniusMap(GF2EX& h, const GF2EXModulus& F);
GF2EX FrobeniusMap(const GF2EXModulus& F);
// Computes h = X^{2^{GF2E::degree()}} mod F,
// by either iterated squaring or modular
// composition. The latter method is based on a technique developed
// in Kaltofen & Shoup (Faster polynomial factorization over high
// algebraic extensions of finite fields, ISSAC 1997). This method is
// faster than iterated squaring when deg(F) is large relative to
// GF2E::degree().
long IterComputeDegree(const GF2EX& h, const GF2EXModulus& F);
// f is assumed to be an "equal degree" polynomial, and h =
// X^{2^{GF2E::degree()}} mod f (see function FrobeniusMap above)
// The common degree of the irreducible factors
// of f is computed. Uses a "baby step/giant step" algorithm, similar
// to NewDDF. Although asymptotocally slower than RecComputeDegree
// (below), it is faster for reasonably sized inputs.
long RecComputeDegree(const GF2EX& h, const GF2EXModulus& F);
// f is assumed to be an "equal degree" polynomial, h = X^{2^{GF2E::degree()}}
// mod f (see function FrobeniusMap above).
// The common degree of the irreducible factors of f is
// computed. Uses a recursive algorithm similar to DetIrredTest.
void TraceMap(GF2EX& w, const GF2EX& a, long d, const GF2EXModulus& F,
const GF2EX& h);
GF2EX TraceMap(const GF2EX& a, long d, const GF2EXModulus& F,
const GF2EX& h);
// Computes w = a+a^q+...+^{q^{d-1}} mod f; it is assumed that d >= 0,
// and h = X^q mod f, q a power of 2^{GF2E::degree()}. This routine
// implements an algorithm from [von zur Gathen and Shoup,
// Computational Complexity 2:187-224, 1992].
// If q = 2^{GF2E::degree()}, then h can be computed most efficiently
// by using the function FrobeniusMap above.
void PowerCompose(GF2EX& w, const GF2EX& h, long d, const GF2EXModulus& F);
GF2EX PowerCompose(const GF2EX& h, long d, const GF2EXModulus& F);
// Computes w = X^{q^d} mod f; it is assumed that d >= 0, and h = X^q
// mod f, q a power of 2^{GF2E::degree()}. This routine implements an
// algorithm from [von zur Gathen and Shoup, Computational Complexity
// 2:187-224, 1992].
// If q = 2^{GF2E::degree()}, then h can be computed most efficiently
// by using the function FrobeniusMap above.