|
4 | 4 | "cell_type": "markdown",
|
5 | 5 | "metadata": {},
|
6 | 6 | "source": [
|
7 |
| - "# EDA" |
| 7 | + "# Exploratory data analysis" |
8 | 8 | ]
|
9 | 9 | },
|
10 | 10 | {
|
|
2405 | 2405 | {
|
2406 | 2406 | "cell_type": "code",
|
2407 | 2407 | "execution_count": 57,
|
2408 |
| - "metadata": {}, |
| 2408 | + "metadata": { |
| 2409 | + "scrolled": true |
| 2410 | + }, |
2409 | 2411 | "outputs": [
|
2410 | 2412 | {
|
2411 | 2413 | "data": {
|
|
2434 | 2436 | "df_minus_ongoing['Day'].value_counts().plot.bar(ylim=[500, 600], rot=330)"
|
2435 | 2437 | ]
|
2436 | 2438 | },
|
| 2439 | + { |
| 2440 | + "cell_type": "markdown", |
| 2441 | + "metadata": {}, |
| 2442 | + "source": [ |
| 2443 | + "Above, we see that virtual meetings seem to be more numerous during the week than during the weekend." |
| 2444 | + ] |
| 2445 | + }, |
2437 | 2446 | {
|
2438 | 2447 | "cell_type": "code",
|
2439 | 2448 | "execution_count": 58,
|
|
2549 | 2558 | }
|
2550 | 2559 | ],
|
2551 | 2560 | "source": [
|
2552 |
| - "# Pandas' hist does not register this as numeric data, interestingly\n", |
| 2561 | + "# Pandas' hist method does not register this as numeric data, interestingly\n", |
2553 | 2562 | "plt.figure(figsize=(30,10))\n",
|
2554 | 2563 | "n, bins, edges = plt.hist(df['Time_dt'],bins=24,ec=\"red\",alpha=0.7)\n",
|
2555 | 2564 | "plt.xticks(bins, rotation=300, fontsize=18)\n",
|
2556 | 2565 | "plt.show()"
|
2557 | 2566 | ]
|
2558 | 2567 | },
|
2559 | 2568 | {
|
2560 |
| - "cell_type": "code", |
2561 |
| - "execution_count": 62, |
| 2569 | + "cell_type": "markdown", |
2562 | 2570 | "metadata": {},
|
2563 |
| - "outputs": [ |
2564 |
| - { |
2565 |
| - "data": { |
2566 |
| - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAT1klEQVR4nO3df7BcZ33f8fensg0T8ICMbojrH8ikmgymxT9yR5A6BTMJsuxJLdJhWqkUBIHRJGO3IW06dcrUZkxnGkKbdEgcjBI0hgyxaQJO1I4dWw2kbktNdeUK/8T4oti1KhfdINcmNYMr8+0fezSzXO/eeySt7o/H79fMmT3neZ6z97tHq889OntWT6oKSVK7/spyFyBJOrUMeklqnEEvSY0z6CWpcQa9JDXutOUuYJR169bV+vXrl7sMSVo19u3b9xdVNTWqb0UG/fr165mZmVnuMiRp1UjyxLg+L91IUuMMeklqnEEvSY0z6CWpcQa9JDVu0aBPcl6SLyd5JMlDSX5xxJgk+USS2ST3J7l0qG97kse6ZfukX4AkaWF9bq88CvyTqrovyZnAviR7qurhoTFXAhu65c3AJ4E3JzkLuAGYBqrbd3dVPT3RVyFJGmvRM/qqeqqq7uvWvwM8Apwzb9gW4LM1cC/w6iRnA1cAe6rqSBfue4DNE30FkqQFHdc1+iTrgUuAr87rOgd4cmj7YNc2rn3Uc+9IMpNkZm5u7njKkiQtoHfQJ3kl8AXgQ1X17PzuEbvUAu0vbqzaWVXTVTU9NTXyW7ySpBPQK+iTnM4g5D9XVV8cMeQgcN7Q9rnAoQXaJUlLpM9dNwE+DTxSVb8+Zthu4L3d3TdvAZ6pqqeAu4BNSdYmWQts6tokSUukz103lwHvAR5Isr9r++fA+QBVdTNwB3AVMAs8B7y/6zuS5KPA3m6/G6vqyOTKlyQtZtGgr6r/wuhr7cNjCrhmTN8uYNcJVSdJOml+M1aSGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1LhFJx5Jsgv4GeBwVf31Ef3/FHj30PO9AZjqZpd6HPgO8AJwtKqmJ1W4JKmfPmf0twCbx3VW1cer6uKquhj4FeA/zZsu8O1dvyEvSctg0aCvqnuAvvO8bgNuPamKJEkTNbFr9El+iMGZ/xeGmgu4O8m+JDsW2X9HkpkkM3Nzc5MqS5Je8ib5YezfBv7rvMs2l1XVpcCVwDVJ3jpu56raWVXTVTU9NTU1wbIk6aVtkkG/lXmXbarqUPd4GLgd2DjBnydJ6mEiQZ/kVcDbgD8eantFkjOPrQObgAcn8fMkSf31ub3yVuByYF2Sg8ANwOkAVXVzN+xngbur6v8O7fpa4PYkx37O71fVn0yudElSH4sGfVVt6zHmFga3YQ63HQAuOtHCJEmT4TdjJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNWzTok+xKcjjJyGkAk1ye5Jkk+7vl+qG+zUkeTTKb5LpJFi5J6qfPGf0twOZFxvznqrq4W24ESLIGuAm4ErgQ2JbkwpMpVpJ0/BYN+qq6BzhyAs+9EZitqgNV9TxwG7DlBJ5HknQSJnWN/ieSfC3JnUne2LWdAzw5NOZg1zZSkh1JZpLMzM3NnVARl18+WE7WpJ5nJfHYLGylva6VVs9KstKOzWr4uzWJoL8PeF1VXQT8JvBHXXtGjK1xT1JVO6tquqqmp6amJlCWJAkmEPRV9WxV/WW3fgdwepJ1DM7gzxsaei5w6GR/niTp+Jx00Cf5kSTp1jd2z/ltYC+wIckFSc4AtgK7T/bnSZKOz2mLDUhyK3A5sC7JQeAG4HSAqroZeBfwC0mOAt8FtlZVAUeTXAvcBawBdlXVQ6fkVUiSxlo06Ktq2yL9vwX81pi+O4A7Tqw0SdIk+M1YSWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGrdo0CfZleRwkgfH9L87yf3d8pUkFw31PZ7kgST7k8xMsnBJUj99zuhvATYv0P/nwNuq6k3AR4Gd8/rfXlUXV9X0iZUoSToZfWaYuifJ+gX6vzK0eS+DScAlSSvEpK/RfwC4c2i7gLuT7EuyY6Edk+xIMpNkZm5ubsJlSdJL16Jn9H0leTuDoP/JoebLqupQkh8G9iT5elXdM2r/qtpJd9lnenq6JlWXJL3UTeSMPsmbgN8FtlTVt4+1V9Wh7vEwcDuwcRI/T5LU30kHfZLzgS8C76mqbwy1vyLJmcfWgU3AyDt3JEmnzqKXbpLcClwOrEtyELgBOB2gqm4GrgdeA/x2EoCj3R02rwVu79pOA36/qv7kFLwGSdIC+tx1s22R/g8CHxzRfgC46MV7SJKWkt+MlaTGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1rlfQJ9mV5HCSkVMBZuATSWaT3J/k0qG+7Uke65btkypcktRP3zP6W4DNC/RfCWzolh3AJwGSnMVg6sE3M5gY/IYka0+0WEnS8esV9FV1D3BkgSFbgM/WwL3Aq5OcDVwB7KmqI1X1NLCHhX9hSJImbFLX6M8BnhzaPti1jWt/kSQ7kswkmZmbm5tQWZKkSQV9RrTVAu0vbqzaWVXTVTU9NTU1obIkSZMK+oPAeUPb5wKHFmiXJC2RSQX9buC93d03bwGeqaqngLuATUnWdh/CburaJElL5LQ+g5LcClwOrEtykMGdNKcDVNXNwB3AVcAs8Bzw/q7vSJKPAnu7p7qxqhb6UFeSNGG9gr6qti3SX8A1Y/p2AbuOvzRJ0iT4zVhJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuN6BX2SzUkeTTKb5LoR/b+RZH+3fCPJ/xnqe2Gob/cki5ckLW7RGaaSrAFuAt7BYLLvvUl2V9XDx8ZU1S8Njf+HwCVDT/Hdqrp4ciVLko5HnzP6jcBsVR2oqueB24AtC4zfBtw6ieIkSSevT9CfAzw5tH2wa3uRJK8DLgC+NNT88iQzSe5N8s5xPyTJjm7czNzcXI+yJEl99An6jGirMWO3An9YVS8MtZ1fVdPA3wf+bZIfHbVjVe2squmqmp6amupRliSpjz5BfxA4b2j7XODQmLFbmXfZpqoOdY8HgD/jB6/fS5JOsT5BvxfYkOSCJGcwCPMX3T2T5MeAtcB/G2pbm+Rl3fo64DLg4fn7SpJOnUXvuqmqo0muBe4C1gC7quqhJDcCM1V1LPS3AbdV1fBlnTcAn0ryfQa/VH51+G4dSdKpt2jQA1TVHcAd89qun7f9kRH7fQX4GydRnyTpJPnNWElqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhrXK+iTbE7yaJLZJNeN6H9fkrkk+7vlg0N925M81i3bJ1m8JGlxi048kmQNcBPwDgbzx+5NsnvETFGfr6pr5+17FnADMM1gQvF93b5PT6R6SdKi+pzRbwRmq+pAVT0P3AZs6fn8VwB7qupIF+57gM0nVqok6UTkB6d4HTEgeRewuao+2G2/B3jz8Nl7kvcB/wqYA74B/FJVPZnkl4GXV9W/7Mb9C+C7VfWvR/ycHcAOgPPPP//Hn3jiiQm8PEl6aUiyr6qmR/X1OaPPiLb5vx3+PbC+qt4E/EfgM8ex76CxamdVTVfV9NTUVI+yJEl99An6g8B5Q9vnAoeGB1TVt6vqe93m7wA/3ndfSdKp1Sfo9wIbklyQ5AxgK7B7eECSs4c2rwYe6dbvAjYlWZtkLbCpa5MkLZFF77qpqqNJrmUQ0GuAXVX1UJIbgZmq2g38oyRXA0eBI8D7un2PJPkog18WADdW1ZFT8DokSWMs+mHscpienq6ZmZnlLkOSVo2T/TBWkrSKGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1rlfQJ9mc5NEks0muG9H/j5M8nOT+JH+a5HVDfS8k2d8tu+fvK0k6tRadSjDJGuAm4B0MJvvem2R3VT08NOx/ANNV9VySXwB+Dfh7Xd93q+riCdctSeqpzxn9RmC2qg5U1fPAbcCW4QFV9eWqeq7bvBc4d7JlSpJOVJ+gPwd4cmj7YNc2zgeAO4e2X55kJsm9Sd45bqckO7pxM3Nzcz3KkiT1seilGyAj2kbOKJ7kHwDTwNuGms+vqkNJXg98KckDVfXNFz1h1U5gJwwmB+9RlySphz5n9AeB84a2zwUOzR+U5KeBDwNXV9X3jrVX1aHu8QDwZ8AlJ1GvJOk49Qn6vcCGJBckOQPYCvzA3TNJLgE+xSDkDw+1r03ysm59HXAZMPwhriTpFFv00k1VHU1yLXAXsAbYVVUPJbkRmKmq3cDHgVcCf5AE4H9W1dXAG4BPJfk+g18qvzrvbh1J0imWqpV3OXx6erpmZmaWuwxJWjWS7Kuq6VF9fjNWkhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktS4XkGfZHOSR5PMJrluRP/Lkny+6/9qkvVDfb/StT+a5IrJlS5J6mPRoE+yBrgJuBK4ENiW5MJ5wz4APF1Vfw34DeBj3b4XMphj9o3AZuC3u+eTJC2RPmf0G4HZqjpQVc8DtwFb5o3ZAnymW/9D4KcymDx2C3BbVX2vqv4cmO2eT5K0RPoE/TnAk0PbB7u2kWOq6ijwDPCanvsCkGRHkpkkM3Nzc/2qlyQtqk/QZ0Tb/BnFx43ps++gsWpnVU1X1fTU1FSPsiRJffQJ+oPAeUPb5wKHxo1JchrwKuBIz30lSadQn6DfC2xIckGSMxh8uLp73pjdwPZu/V3Al6qquvat3V05FwAbgP8+mdIlSX2cttiAqjqa5FrgLmANsKuqHkpyIzBTVbuBTwO/l2SWwZn81m7fh5L8O+Bh4ChwTVW9cIpeiyRphAxOvFeW6enpmpmZWe4yJGnVSLKvqqZH9fnNWElqnEEvSY0z6CWpcQa9JDVuRX4Ym2QOeGK56+hhHfAXy13EcVht9YI1L5XVVvNqqxdOfc2vq6qR3zZdkUG/WiSZGfcp90q02uoFa14qq63m1VYvLG/NXrqRpMYZ9JLUOIP+5Oxc7gKO02qrF6x5qay2mldbvbCMNXuNXpIa5xm9JDXOoJekxhn0C0hyXpIvJ3kkyUNJfnHEmMuTPJNkf7dcvxy1zqvp8SQPdPW86H+Hy8Anuknb709y6XLUOVTPjw0dv/1Jnk3yoXljlv04J9mV5HCSB4fazkqyJ8lj3ePaMftu78Y8lmT7qDFLWPPHk3y9+7O/Pcmrx+y74PtoCev9SJL/NfRnf9WYfTcnebR7X1+3FPUuUPPnh+p9PMn+MfsuzTGuKpcxC3A2cGm3fibwDeDCeWMuB/7Dctc6r6bHgXUL9F8F3MlgBrC3AF9d7pqHalsD/G8GX/5YUccZeCtwKfDgUNuvAdd169cBHxux31nAge5xbbe+dhlr3gSc1q1/bFTNfd5HS1jvR4Bf7vG++SbweuAM4Gvz/64uZc3z+v8NcP1yHmPP6BdQVU9V1X3d+neARxgz5+0qswX4bA3cC7w6ydnLXVTnp4BvVtWK+2Z0Vd3DYL6FYVuAz3TrnwHeOWLXK4A9VXWkqp4G9gCbT1mhQ0bVXFV312BuZ4B7Gcz8tiKMOcZ9bARmq+pAVT0P3Mbgz+aUW6jmJAH+LnDrUtQyjkHfU5L1wCXAV0d0/0SSryW5M8kbl7Sw0Qq4O8m+JDtG9PeetH0ZbGX8X4qVdpwBXltVT8HgxAD44RFjVvLx/jkG/7obZbH30VK6trvUtGvM5bGVeoz/FvCtqnpsTP+SHGODvockrwS+AHyoqp6d130fg8sMFwG/CfzRUtc3wmVVdSlwJXBNkrfO6+89aftS6qaqvBr4gxHdK/E497VSj/eHGcz89rkxQxZ7Hy2VTwI/ClwMPMXgUsh8K/IYA9tY+Gx+SY6xQb+IJKczCPnPVdUX5/dX1bNV9Zfd+h3A6UnWLXGZ82s61D0eBm5n8M/aYSt10vYrgfuq6lvzO1bice5869hlr+7x8IgxK+54dx8I/wzw7uouFs/X4320JKrqW1X1QlV9H/idMXWsxGN8GvB3gM+PG7NUx9igX0B3fe3TwCNV9etjxvxIN44kGxkc028vXZUvqucVSc48ts7gg7cH5w3bDby3u/vmLcAzxy4/LLOxZz8r7TgP2Q0cu4tmO/DHI8bcBWxKsra77LCpa1sWSTYD/wy4uqqeGzOmz/toScz7/Ohnx9SxF9iQ5ILuX4ZbGfzZLKefBr5eVQdHdS7pMV6KT6VX6wL8JIN//t0P7O+Wq4CfB36+G3Mt8BCDT/nvBf7mMtf8+q6Wr3V1fbhrH645wE0M7lJ4AJheAcf6hxgE96uG2lbUcWbwS+gp4P8xOIP8APAa4E+Bx7rHs7qx08DvDu37c8Bst7x/mWueZXA9+9h7+uZu7F8F7ljofbRM9f5e9z69n0F4nz2/3m77KgZ3xn1zqeodV3PXfsux9+/Q2GU5xv4XCJLUOC/dSFLjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUuP8P0mU2ZOBbGw8AAAAASUVORK5CYII=\n", |
2567 |
| - "text/plain": [ |
2568 |
| - "<Figure size 432x288 with 1 Axes>" |
2569 |
| - ] |
2570 |
| - }, |
2571 |
| - "metadata": { |
2572 |
| - "needs_background": "light" |
2573 |
| - }, |
2574 |
| - "output_type": "display_data" |
2575 |
| - } |
2576 |
| - ], |
2577 | 2571 | "source": [
|
2578 |
| - "plt.figure()\n", |
2579 |
| - "a = [1,2,5,6,9,11,15,17,18]\n", |
2580 |
| - "plt.eventplot(a, orientation='horizontal', colors='b')\n", |
2581 |
| - "# plt.axis('off')\n", |
2582 |
| - "plt.show()" |
| 2572 | + "Each bin in the histogram above is about 1 hour long. We see that all the meeting times are (very roughly) normally distributed with a distinct skew. The distribution peaks in the early evening and steadily drops off after. There are 2 minor peaks that break up this pattern however, roughly corresponding to the wake-up and lunch-hours. **Important note: these times are Central USA, which is where this data was sourced (the site displays local time).** Luckily, the vast majority of meetings are held in the US, which is why this distribution makes so much sense in light of the typical 9-5 work day." |
2583 | 2573 | ]
|
2584 | 2574 | },
|
2585 | 2575 | {
|
|
0 commit comments