-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata.py
executable file
·254 lines (187 loc) · 7.01 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import sys
import torch
import numpy as np
import pandas as pd
from tqdm import tqdm
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data.sampler import Sampler
from torch.nn.utils.rnn import pad_sequence
class Labels(object):
def __init__(self):
self.chars = ['<BLANK>', ' ', 'А', 'Б', 'В', 'Г', 'Д', 'Е', 'Ё', 'Ж', 'З', 'И', 'Й', 'К', 'Л', 'М', 'Н', 'О', 'П', 'Р', 'С', 'Т', 'У', 'Ф', 'Х', 'Ц', 'Ч', 'Ш', 'Щ', 'Ъ', 'Ы', 'Ь', 'Э', 'Ю', 'Я']
self.index = {c: i for i, c in enumerate(self.chars)}
def __len__(self):
return len(self.chars)
def __call__(self, sentence):
targets = []
for c in sentence.strip().upper():
targets.append(self.index[c])
return targets
def space(self):
return self.index[' ']
def blank(self):
return self.index['<BLANK>']
def is_accepted(self, sentence):
sentence = sentence.strip().upper()
if len(sentence) == 0:
return False
for c in sentence:
if c not in self.index:
return False
return True
def required_frames(self, sentence):
targets = self(sentence)
frames = len(targets)
for t1, t2 in zip(targets[:-1], targets[1:]):
if t1 == t2:
frames += 1
return frames
def load_data(source):
if isinstance(source, list):
data = [pd.read_csv(p, index_col='path', encoding='utf8') for p in source]
return pd.concat(data)
return pd.read_csv(source, index_col='path', encoding='utf8')
class TextDataset(Dataset):
def __init__(self, source, labels, batch_size):
data = load_data(source)
b = labels.blank()
self.utterances = [[b] + labels(t) for t in data['text'].values]
self.data = []
self.batch_size = batch_size
def shuffle(self, epoch):
np.random.RandomState(epoch).shuffle(self.utterances)
data = np.concatenate(self.utterances)
data = torch.tensor(data, dtype=torch.long)
n = data.numel() // self.batch_size
data = data.narrow(0, 0, n * self.batch_size)
self.data = data.view(self.batch_size, -1).t()
def __len__(self):
return len(self.data) - 1
def __getitem__(self, i):
return self.data[i], self.data[i+1]
class AudioDataset(Dataset):
def __init__(self, root, source, labels, model=None, length=0):
self.root = root
self.data = load_data(source)
self.labels = labels
if model is not None:
self.filter_by_model(model)
if length > 0:
self.filter_by_length(length)
def __len__(self):
return len(self.data)
def __getitem__(self, i):
file = self.data.iloc[i]
features = torch.tensor(np.load(self.root + file.name), dtype=torch.float32)
targets = torch.tensor(self.labels(file['text']), dtype=torch.int)
return features, targets
def filter_by_length(self, length):
self.filter(self.data[self.data['frames'] < length])
def filter_by_model(self, model):
frames = self.data['frames'].values
frames = model.output_time(frames)
index = []
for i, text in enumerate(self.data['text'].values):
if self.labels.required_frames(text) <= frames[i]:
index.append(i)
self.filter(self.data.iloc[index])
def filter(self, subset):
diff = len(self.data) - len(subset)
ratio = diff / len(self.data) * 100
self.data = subset.sort_values('frames')
print('filter %7d %7.2f%%' % (diff, ratio))
class BucketingSampler(Sampler):
def __init__(self, data, size=1, limit=sys.maxsize):
super().__init__(data)
index = list(range(len(data)))
self.bins = [index[i:i + size] for i in range(0, len(index), size)]
self.limit = limit
def __iter__(self):
for batch in self.bins[:self.limit]:
yield batch
def __len__(self):
return len(self.bins[:self.limit])
def shuffle(self, epoch):
np.random.RandomState(epoch).shuffle(self.bins)
def collate_audio(batch):
batch = sorted(batch, key=lambda b: b[0].shape[0], reverse=True)
n = len(batch)
xs = []
ys = []
xn = torch.empty(n, dtype=torch.int)
yn = torch.empty(n, dtype=torch.int)
for i, (x, y) in enumerate(batch):
xs.append(x)
ys.append(y)
xn[i] = len(x)
yn[i] = len(y)
# N x 1 x D x T
xs = pad_sequence(xs, batch_first=True)
xs = xs.unsqueeze(dim=1).transpose(2, 3)
# N x S
ys = pad_sequence(ys, batch_first=True)
return xs, ys, xn, yn
class DataLoaderCuda(DataLoader):
def __init__(self, *args, **kwargs):
kwargs['num_workers'] = 4
kwargs['pin_memory'] = True
super().__init__(*args, **kwargs)
def __iter__(self):
self.progress = tqdm(super().__iter__())
for cpu in self.progress:
gpu = []
for values in cpu:
gpu.append(values.cuda(non_blocking=True))
yield gpu
def shuffle(self, epoch):
self.batch_sampler.shuffle(epoch)
def set_description(self, desc):
self.progress.set_description(desc)
def close(self):
self.progress.close()
def split_train_dev_test(root, labels, model, batch_size=32):
train = [
root + 'asr_public_phone_calls_1.csv',
root + 'asr_public_phone_calls_2_aa.csv',
root + 'asr_public_phone_calls_2_ab.csv',
root + 'public_youtube1120_hq.csv',
root + 'public_youtube700_aa.csv',
root + 'public_youtube700_ab.csv'
]
dev = [
root + 'asr_public_phone_calls_1.csv',
root + 'public_youtube1120_hq.csv',
]
test = [
root + 'asr_calls_2_val.csv',
root + 'buriy_audiobooks_2_val.csv',
root + 'public_youtube700_val.csv'
]
train = AudioDataset(root, train, labels, model, 400)
dev = AudioDataset(root, dev, labels, model, 1000)
test = AudioDataset(root, test, labels, model, 1000)
sampler1 = BucketingSampler(train, size=batch_size)
sampler2 = BucketingSampler(dev, size=1, limit=1000)
sampler2.shuffle(0)
train = DataLoaderCuda(train, collate_fn=collate_audio, batch_sampler=sampler1)
dev = DataLoaderCuda(dev, collate_fn=collate_audio, batch_sampler=sampler2)
test = DataLoaderCuda(test, collate_fn=collate_audio, batch_size=16)
return train, dev, test
if __name__ == '__main__':
labels = Labels()
dataset = AudioDataset('data/', 'data/public_youtube700_val.csv', labels)
loader = DataLoader(dataset, batch_size=32, collate_fn=collate_audio)
x_lengths = []
y_lengths = []
for _, _, xn, yn in tqdm(loader):
x_lengths.extend(list(xn.numpy()))
y_lengths.extend(list(yn.numpy()))
import seaborn as sns
import matplotlib.pyplot as plt
plt.title('x lengths')
sns.distplot(x_lengths)
plt.show()
plt.title('y lengths')
sns.distplot(y_lengths)
plt.show()