-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEmulatior_v0.1.py
136 lines (116 loc) · 3.95 KB
/
Emulatior_v0.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
import random
import copy
import sys
N_observations=100
N_subclones=2
exprestion=20
non-abberant_cells=0.2
#N_observ=int(raw_input('Size of emulated data?'))
#N_subclones=int(raw_input('Number of emulated subclones?'))
norm_data=np.zeros((N_observations,4))
change_frame=N_observations/(N_subclones+2)
normal_CNA=np.random.poisson(exprestion, N_observations)
subclon_CNA_data={}
for i in range(N_subclones):
current_subclone_data=normal_CNA
current_subclone_data[j]+=i*exprestion for j in range(i*change_frame,(i+1)*change_frame)
subclon_CNA_data[1]=[]
# DP Emulate
for i in norm_data:
i[0]=1
i[3]=1
candidat=random.randint(1, N_observ*100)
while candidat in norm_data[:,1]:
candidat=random.randint(1, N_observ*100)
i[1]=candidat
i[2]=int(random.normalvariate(100, 20))
norm_data=norm_data[np.argsort(norm_data[:,1])]
# Subclones CNA Emulate
SC=[]
BSC=[]
VSC=[]
snv_dict={}
change_CN=[0, 0.5, 1.5,2]
for i in range(N_subclones):
SC.append(copy.deepcopy(norm_data))
BSC.append(copy.deepcopy(norm_data))
for j in BSC[i]:
j[3]=j[2]
j[2]=0
a=random.random()
if a<=0.5:
j[2]=int(random.normalvariate(j[3]/2, 2))
coint=0
evol_case=random.randint(N_observ//10,N_observ//5)
while coint < evol_case:
ch_obs=random.randint(0,len(SC[i])-1)
change=change_CN[random.randint(0,3)]
x_mean=(SC[i][ch_obs][2]*change)
SC[i][ch_obs][2]=int(random.normalvariate(x_mean, 2))
BSC[i][ch_obs][3]=SC[i][ch_obs][2]
a=random.random()
if a<=0.5:
if change==2:
BSC[i][ch_obs][2]=int(random.normalvariate(BSC[i][ch_obs][3]/2, 2))
elif change==1.5:
BSC[i][ch_obs][2]=int(random.normalvariate(BSC[i][ch_obs][3]/3, 2))
elif change==0:
BSC[i][ch_obs][2]=0
elif change==0.5:
BSC[i][ch_obs][2]=0
loh_stat=random.random()
if loh_stat<=0.1:
SC[i][ch_obs][3]=int(random.normalvariate(SC[i][ch_obs][3]*2, 2))
BSC[i][ch_obs][3]=SC[i][ch_obs][2]
coint+=1
VSC.append(BSC[i])
for j in range(len(VSC[i])):
mut=random.random()
if mut <=0.5:
if VSC[i][j][2]==0:
VSC[i][j][2]=int(random.normalvariate(VSC[i][j][3]/2,2))
else:
VSC[i][j][2]=int(random.normalvariate(VSC[i][j][2]/2,2))
else:
VSC[i][j][1]=int(random.normalvariate(VSC[i][j][1],N_observ/10))
VSC[i][j][2]=int(random.normalvariate(VSC[i][j][2]/2,2))
if VSC[i][j][2]<=0:
VSC[i][j][2]=1
if VSC[i][j][1] not in snv_dict.keys():
snv_dict[VSC[i][j][1]]=[[VSC[i][j][2]], VSC[i][j][3]]
else:
snv_dict[VSC[i][j][1]][0].append(VSC[i][j][2])
print(len(snv_dict))
CNA_data=copy.deepcopy(norm_data)
for i in range(len(CNA_data)):
for j in SC:
CNA_data[i][2]+=j[i][2]
CNA_data[i][2]/=(len(SC)+1)
CNA_data[i][2]=int(CNA_data[i][2])
BAF_data=copy.deepcopy(norm_data)
for i in range(len(BAF_data)):
for j in BSC:
BAF_data[i][2]+=j[i][2]
BAF_data[i][3]+=j[i][3]
BAF_data[i][2]/=(len(BSC)+1)
BAF_data[i][2]=int(BAF_data[i][2])
BAF_data[i][3]/=(len(BSC)+1)
BAF_data[i][3]=int(BAF_data[i][3])
# Output
CNA=open('CNA_Emulate.txt', 'w')
for i in CNA_data:
CNA.write(str(int(i[0]))+'\t'+str(int(i[1]))+'\t'+str(int(i[2]))+'\t'+str(int(i[3]))+'\n')
CNA.close()
BAF=open('BAF_Emulate.txt', 'w')
for i in BAF_data:
BAF.write(str(int(i[0]))+'\t'+str(int(i[1]))+'\t'+str(int(i[2]))+'\t'+str(int(i[3]))+'\n')
BAF.close()
SNV=open('SNV_Emulate.txt', 'w')
for i in snv_dict.keys():
snv_read=int(sum(snv_dict[i][0])/len(snv_dict[i][0]))
SNV.write('1'+'\t'+str(int(i))+'\t'+str(int(snv_read))+'\t'+str(int(snv_dict[i][1]))+'\n')
SNV.close()
print('-----end-----')
#print(data)
# In[ ]: