Skip to content

Latest commit

 

History

History
193 lines (133 loc) · 5.85 KB

type-coercions.md

File metadata and controls

193 lines (133 loc) · 5.85 KB

Type coercions

Type coercions are implicit operations that change the type of a value. They happen automatically at specific locations and are highly restricted in what types actually coerce.

Coercions are originally defined in RFC 401 and expanded upon in RFC 1558.

Coercion sites

A coercion can only occur at certain coercion sites in a program; these are typically places where the desired type is explicit or can be derived by propagation from explicit types (without type inference). Possible coercion sites are:

  • let statements where an explicit type is given.

    For example, &mut 42 is coerced to have type &i8 in the following:

    let _: &i8 = &mut 42;
  • static and const item declarations (similar to let statements).

  • Arguments for function calls

    The value being coerced is the actual parameter, and it is coerced to the type of the formal parameter.

    For example, &mut 42 is coerced to have type &i8 in the following:

    fn bar(_: &i8) { }
    
    fn main() {
        bar(&mut 42);
    }

    For method calls, the receiver (self parameter) can only take advantage of unsized coercions.

  • Instantiations of struct, union, or enum variant fields

    For example, &mut 42 is coerced to have type &i8 in the following:

    struct Foo<'a> { x: &'a i8 }
    
    fn main() {
        Foo { x: &mut 42 };
    }
  • Function results–either the final line of a block if it is not semicolon-terminated or any expression in a return statement

    For example, x is coerced to have type &dyn Display in the following:

    use std::fmt::Display;
    fn foo(x: &u32) -> &dyn Display {
        x
    }
  • The as type cast operator can also explicitly perform type coersion.

If the expression in one of these coercion sites is a coercion-propagating expression, then the relevant sub-expressions in that expression are also coercion sites. Propagation recurses from these new coercion sites. Propagating expressions and their relevant sub-expressions are:

  • Array literals, where the array has type [U; n]. Each sub-expression in the array literal is a coercion site for coercion to type U.

  • Array literals with repeating syntax, where the array has type [U; n]. The repeated sub-expression is a coercion site for coercion to type U.

  • Tuples, where a tuple is a coercion site to type (U_0, U_1, ..., U_n). Each sub-expression is a coercion site to the respective type, e.g. the zeroth sub-expression is a coercion site to type U_0.

  • Parenthesized sub-expressions ((e)): if the expression has type U, then the sub-expression is a coercion site to U.

  • Blocks: if a block has type U, then the last expression in the block (if it is not semicolon-terminated) is a coercion site to U. This includes blocks which are part of control flow statements, such as if/else, if the block has a known type.

Coercion types

Coercion is allowed between the following types:

  • T to U if T is a subtype of U (reflexive case)

  • T_1 to T_3 where T_1 coerces to T_2 and T_2 coerces to T_3 (transitive case)

    Note that this is not fully supported yet.

  • &mut T to &T

  • *mut T to *const T

  • &T to *const T

  • &mut T to *mut T

  • &T or &mut T to &U if T implements Deref<Target = U>. For example:

    use std::ops::Deref;
    
    struct CharContainer {
        value: char,
    }
    
    impl Deref for CharContainer {
        type Target = char;
    
        fn deref<'a>(&'a self) -> &'a char {
            &self.value
        }
    }
    
    fn foo(arg: &char) {}
    
    fn main() {
        let x = &mut CharContainer { value: 'y' };
        foo(x); //&mut CharContainer is coerced to &char.
    }
  • &mut T to &mut U if T implements DerefMut<Target = U>.

  • TyCtor(T) to TyCtor(U), where TyCtor(T) is one of

    • &T
    • &mut T
    • *const T
    • *mut T
    • Box<T>

    and where U can be obtained from T by unsized coercion.

  • Non capturing closures to fn pointers

  • ! to any T

Unsized Coercions

The following coercions are called unsized coercions, since they relate to converting sized types to unsized types, and are permitted in a few cases where other coercions are not, as described above. They can still happen anywhere else a coercion can occur.

Two traits, Unsize and CoerceUnsized, are used to assist in this process and expose it for library use. The following coercions are built-ins and, if T can be coerced to U with one of them, then an implementation of Unsize<U> for T will be provided:

  • [T; n] to [T].

  • T to dyn U, when T implements U + Sized

  • Foo<..., T, ...> to Foo<..., U, ...>, when:

    • Foo is a struct.
    • T implements Unsize<U>.
    • The last field of Foo has a type involving T.
    • If that field has type Bar<T>, then Bar<T> implements Unsized<Bar<U>>.
    • T is not part of the type of any other fields.

Additionally, a type Foo<T> can implement CoerceUnsized<Foo<U>> when T implements Unsize<U> or CoerceUnsized<Foo<U>>. This allows it to provide a unsized coercion to Foo<U>.

Note: While the definition of the unsized coercions and their implementation has been stabilized, the traits themselves are not yet stable and therefore can't be used directly in stable Rust.