-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
236 lines (198 loc) · 7.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import matplotlib.pyplot as plt
import numpy as np
import csv
from snakeGame.screen import Screen
from learningModels.process import LearningProcess, compute_avg_return, points_history
from learningModels.typesSnakeGame import SnakeAI, SnakeAIBorders
from learningModels.GameEnv import SnakeGameEnv
from utils import training_loops, sampler
def training():
snake = SnakeAI([30,30])
agent_environment = SnakeGameEnv(snake, -100)
Lp = LearningProcess(agent_environment)
Lp.pre_learning_process()
Lp.training()
Lp.policy_saver()
def training_2():
snake = SnakeAIBorders([30,30])
rewards = {
'aprox': [1,0],
'eat':[10,0],
'dead':[-100, 0]
}
agent_environment = SnakeGameEnv(snake, rewards, 33)
Lp = LearningProcess(agent_environment)
Lp.pre_learning_process()
Lp.training()
Lp.policy_saver()
def training_3():
snake = SnakeAIBorders([30,30])
rewards = {
'aprox': [1,0],
'eat':[10,0],
'dead':[-100, 0]
}
agent_environment = SnakeGameEnv(snake, rewards, 33)
Lp = LearningProcess(agent_environment)
Lp.pre_learning_process()
returns, losses = Lp.training()
visualization(Lp, returns, losses)
path = Lp.policy_saver()
save_returns = path + '/returns.csv'
save_losses = path + '/losses.csv'
write_data(save_returns, returns)
write_data(save_losses, losses)
returns_read = read_data(save_returns)
losses_read = read_data(save_losses)
visualization(Lp, returns_read, losses_read)
def training_4():
snakes_games = [SnakeAI([30,30]), SnakeAIBorders([30,30])]
for snake in snakes_games:
rewards = [{
'aprox': [1,0],
'eat':[10,0],
'dead':[-100, 0]
},
{
'aprox': [2,-1],
'eat':[10,0],
'dead':[-100, 0]
},
]
for reward in rewards:
agent_environment = SnakeGameEnv(snake, reward, len(snakes_games[0].state()))
for i in range(3):
Lp = LearningProcess(agent_environment)
Lp.pre_learning_process()
returns, losses = Lp.training()
visualization(Lp, returns, losses)
path = Lp.policy_saver(i)
save_returns = path + '/returns.csv'
save_losses = path + '/losses.csv'
write_data(save_returns, returns)
write_data(save_losses, losses)
def training_loops_2(snakes_games, rewards, redundance):
for snake in snakes_games:
for reward in rewards:
agent_environment = SnakeGameEnv(snake, reward, len(snake.state()))
Lp = LearningProcess(agent_environment)
for i in range(redundance):
print('*-*'*15)
print('iteration {} using the reward {} with the rules/game {} and input {}'.format(i, reward, snake.__class__.__name__, len(snake.state())))
Lp.pre_learning_process()
returns, losses = Lp.training()
path = Lp.policy_saver(i)
save_returns = path + '/returns.csv'
save_losses = path + '/losses.csv'
write_data(save_returns, returns)
write_data(save_losses, losses)
def samples_1():
snake = SnakeAI([30,30])
rewards = {
'aprox': [1,0],
'eat':[10,0],
'dead':[-100, 0]
}
agent_environment = SnakeGameEnv(snake, rewards, 33)
Lp = LearningProcess(agent_environment)
policy = Lp.load_previous_policy(0,0)
return compute_avg_return(Lp.eval_env, policy, 30)
def samples_2(snake, reward, num_reward=0, iteration=0, num_episodes=30):
agent_environment = SnakeGameEnv(snake, reward, len(snake.state()))
Lp = LearningProcess(agent_environment)
policy = Lp.load_previous_policy(num_reward, iteration)
return compute_avg_return(Lp.eval_env, policy, num_episodes)
def samples_3(snake, reward, num_reward=0, iteration=0, num_episodes=30):
agent_environment = SnakeGameEnv(snake, reward, len(snake.state()))
Lp = LearningProcess(agent_environment)
policy = Lp.load_previous_policy(num_reward, iteration)
return points_history(Lp.sample_env, policy, num_episodes)
def playing_AI():
snake = SnakeAI([30,30])
agent_environment = SnakeGameEnv(snake)
screen = Screen(300, 300, [30, 30], 5)
Lp = LearningProcess(agent_environment)
Lp.play_previous_policy(screen)
def write_data(file, data):
with open(file, 'w') as f:
data_writer = csv.writer(f, delimiter=',')
for row in data:
data_writer.writerow(row)
def read_data(file):
data = []
with open(file, 'r') as f:
data_reader = csv.reader(f, delimiter=',')
for row in data_reader:
data.append([float(i) for i in row])
return data
def visualization2(returns, losses):
fig,ax = plt.subplots(1,2)
fig.suptitle('Training process performance', fontsize=16)
pass
def visualization(process, returns, losses):
""""""
fig, ax = plt.subplots(1, 2)
#Title
fig.suptitle('Training process performance', fontsize=16)
#Data
returns = np.transpose(np.matrix(returns))
iterations_avg = range(0, process.num_iterations + 1, process.eval_interval)
iterations_loss = range(0, process.num_iterations, process.log_interval)
#Graph 1
for i in range(len(returns)):
ax[0].plot(iterations_avg, np.ravel(returns[i]), alpha = 0.15, color='gray')
avg = np.mean(np.transpose(returns), axis=1)
ax[0].plot(iterations_avg, avg, color='red')
ax[0].set_ylabel('Average Return')
ax[0].set_xlabel('Iterations')
ax[0].set_title('Evolution of the Average Return ')
#Graph 2
ax[1].plot(iterations_loss, losses)
ax[1].set_ylabel('Loss')
ax[1].set_xlabel('Iterations')
ax[1].set_title('Evolution of the loss')
plt.show()
if __name__ == "__main__":
#training()
#training_2()
#training_3()
#training_4()
#playing_AI()
snakes_games = [SnakeAI([30,30]), SnakeAIBorders([30,30])]
rewards = [{
'aprox': [1,0],
'eat':[10,0],
'dead':[-100, 0]
},
{
'aprox': [1,0],
'eat':[10,0],
'dead':[-10, 0]
},
{
'aprox': [1,-1],
'eat':[10,0],
'dead':[-100, 0]
},
{
'aprox': [3,-1],
'eat':[10,0],
'dead':[-100, 0]
},
{
'aprox': [1,0],
'eat':[20,0],
'dead':[-10, 0]
},
{
'aprox': [3,-1],
'eat':[20,0],
'dead':[-10, 0]
},
]
#training_loops(snakes_games, rewards,2)
#print(samples_3(snakes_games[0], rewards[0], 0, 0,1))
for i in range(50):
a =sampler(snakes_games[0], rewards[0], 0, 0, 1, True)
print(len(a), a[-1])
#training_5(snakes_games, rewards, 1)