-
Notifications
You must be signed in to change notification settings - Fork 333
/
Copy pathexpressions.rs
942 lines (813 loc) · 38.7 KB
/
expressions.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
use iter_extended::vecmap;
use noirc_errors::{Location, Span};
use regex::Regex;
use rustc_hash::FxHashSet as HashSet;
use crate::{
ast::{
ArrayLiteral, ConstructorExpression, IfExpression, InfixExpression, Lambda, UnaryOp,
UnresolvedTypeData, UnresolvedTypeExpression,
},
hir::{
comptime::{self, InterpreterError},
resolution::errors::ResolverError,
type_check::{generics::TraitGenerics, TypeCheckError},
},
hir_def::{
expr::{
HirArrayLiteral, HirBinaryOp, HirBlockExpression, HirCallExpression, HirCastExpression,
HirConstructorExpression, HirExpression, HirIfExpression, HirIndexExpression,
HirInfixExpression, HirLambda, HirMemberAccess, HirMethodCallExpression,
HirMethodReference, HirPrefixExpression,
},
traits::TraitConstraint,
},
macros_api::{
BlockExpression, CallExpression, CastExpression, Expression, ExpressionKind, HirLiteral,
HirStatement, Ident, IndexExpression, Literal, MemberAccessExpression,
MethodCallExpression, PrefixExpression, StatementKind,
},
node_interner::{DefinitionKind, ExprId, FuncId, InternedStatementKind, TraitMethodId},
token::Tokens,
QuotedType, Shared, StructType, Type,
};
use super::{Elaborator, LambdaContext};
impl<'context> Elaborator<'context> {
pub(crate) fn elaborate_expression(&mut self, expr: Expression) -> (ExprId, Type) {
let (hir_expr, typ) = match expr.kind {
ExpressionKind::Literal(literal) => self.elaborate_literal(literal, expr.span),
ExpressionKind::Block(block) => self.elaborate_block(block),
ExpressionKind::Prefix(prefix) => return self.elaborate_prefix(*prefix, expr.span),
ExpressionKind::Index(index) => self.elaborate_index(*index),
ExpressionKind::Call(call) => self.elaborate_call(*call, expr.span),
ExpressionKind::MethodCall(call) => self.elaborate_method_call(*call, expr.span),
ExpressionKind::Constructor(constructor) => self.elaborate_constructor(*constructor),
ExpressionKind::MemberAccess(access) => {
return self.elaborate_member_access(*access, expr.span)
}
ExpressionKind::Cast(cast) => self.elaborate_cast(*cast, expr.span),
ExpressionKind::Infix(infix) => return self.elaborate_infix(*infix, expr.span),
ExpressionKind::If(if_) => self.elaborate_if(*if_),
ExpressionKind::Variable(variable) => return self.elaborate_variable(variable),
ExpressionKind::Tuple(tuple) => self.elaborate_tuple(tuple),
ExpressionKind::Lambda(lambda) => self.elaborate_lambda(*lambda),
ExpressionKind::Parenthesized(expr) => return self.elaborate_expression(*expr),
ExpressionKind::Quote(quote) => self.elaborate_quote(quote, expr.span),
ExpressionKind::Comptime(comptime, _) => {
return self.elaborate_comptime_block(comptime, expr.span)
}
ExpressionKind::Unsafe(block_expression, _) => {
self.elaborate_unsafe_block(block_expression)
}
ExpressionKind::Resolved(id) => return (id, self.interner.id_type(id)),
ExpressionKind::Interned(id) => {
let expr_kind = self.interner.get_expression_kind(id);
let expr = Expression::new(expr_kind.clone(), expr.span);
return self.elaborate_expression(expr);
}
ExpressionKind::InternedStatement(id) => {
return self.elaborate_interned_statement_as_expr(id, expr.span);
}
ExpressionKind::Error => (HirExpression::Error, Type::Error),
ExpressionKind::Unquote(_) => {
self.push_err(ResolverError::UnquoteUsedOutsideQuote { span: expr.span });
(HirExpression::Error, Type::Error)
}
ExpressionKind::AsTraitPath(_) => todo!("Implement AsTraitPath"),
};
let id = self.interner.push_expr(hir_expr);
self.interner.push_expr_location(id, expr.span, self.file);
self.interner.push_expr_type(id, typ.clone());
(id, typ)
}
fn elaborate_interned_statement_as_expr(
&mut self,
id: InternedStatementKind,
span: Span,
) -> (ExprId, Type) {
match self.interner.get_statement_kind(id) {
StatementKind::Expression(expr) | StatementKind::Semi(expr) => {
self.elaborate_expression(expr.clone())
}
StatementKind::Interned(id) => self.elaborate_interned_statement_as_expr(*id, span),
StatementKind::Error => {
let expr = Expression::new(ExpressionKind::Error, span);
self.elaborate_expression(expr)
}
other => {
let statement = other.to_string();
self.push_err(ResolverError::InvalidInternedStatementInExpr { statement, span });
let expr = Expression::new(ExpressionKind::Error, span);
self.elaborate_expression(expr)
}
}
}
pub(super) fn elaborate_block(&mut self, block: BlockExpression) -> (HirExpression, Type) {
let (block, typ) = self.elaborate_block_expression(block);
(HirExpression::Block(block), typ)
}
fn elaborate_block_expression(&mut self, block: BlockExpression) -> (HirBlockExpression, Type) {
self.push_scope();
let mut block_type = Type::Unit;
let mut statements = Vec::with_capacity(block.statements.len());
for (i, statement) in block.statements.into_iter().enumerate() {
let (id, stmt_type) = self.elaborate_statement(statement);
statements.push(id);
if let HirStatement::Semi(expr) = self.interner.statement(&id) {
let inner_expr_type = self.interner.id_type(expr);
let span = self.interner.expr_span(&expr);
self.unify(&inner_expr_type, &Type::Unit, || TypeCheckError::UnusedResultError {
expr_type: inner_expr_type.clone(),
expr_span: span,
});
}
if i + 1 == statements.len() {
block_type = stmt_type;
}
}
self.pop_scope();
(HirBlockExpression { statements }, block_type)
}
fn elaborate_unsafe_block(&mut self, block: BlockExpression) -> (HirExpression, Type) {
// Before entering the block we cache the old value of `in_unsafe_block` so it can be restored.
let old_in_unsafe_block = self.in_unsafe_block;
self.in_unsafe_block = true;
let (hir_block_expression, typ) = self.elaborate_block_expression(block);
// Finally, we restore the original value of `self.in_unsafe_block`.
self.in_unsafe_block = old_in_unsafe_block;
(HirExpression::Unsafe(hir_block_expression), typ)
}
fn elaborate_literal(&mut self, literal: Literal, span: Span) -> (HirExpression, Type) {
use HirExpression::Literal as Lit;
match literal {
Literal::Unit => (Lit(HirLiteral::Unit), Type::Unit),
Literal::Bool(b) => (Lit(HirLiteral::Bool(b)), Type::Bool),
Literal::Integer(integer, sign) => {
let int = HirLiteral::Integer(integer, sign);
(Lit(int), self.polymorphic_integer_or_field())
}
Literal::Str(str) | Literal::RawStr(str, _) => {
let len = Type::Constant(str.len() as u32);
(Lit(HirLiteral::Str(str)), Type::String(Box::new(len)))
}
Literal::FmtStr(str) => self.elaborate_fmt_string(str, span),
Literal::Array(array_literal) => {
self.elaborate_array_literal(array_literal, span, true)
}
Literal::Slice(array_literal) => {
self.elaborate_array_literal(array_literal, span, false)
}
}
}
fn elaborate_array_literal(
&mut self,
array_literal: ArrayLiteral,
span: Span,
is_array: bool,
) -> (HirExpression, Type) {
let (expr, elem_type, length) = match array_literal {
ArrayLiteral::Standard(elements) => {
let first_elem_type = self.interner.next_type_variable();
let first_span = elements.first().map(|elem| elem.span).unwrap_or(span);
let elements = vecmap(elements.into_iter().enumerate(), |(i, elem)| {
let span = elem.span;
let (elem_id, elem_type) = self.elaborate_expression(elem);
self.unify(&elem_type, &first_elem_type, || {
TypeCheckError::NonHomogeneousArray {
first_span,
first_type: first_elem_type.to_string(),
first_index: 0,
second_span: span,
second_type: elem_type.to_string(),
second_index: i,
}
.add_context("elements in an array must have the same type")
});
elem_id
});
let length = Type::Constant(elements.len() as u32);
(HirArrayLiteral::Standard(elements), first_elem_type, length)
}
ArrayLiteral::Repeated { repeated_element, length } => {
let span = length.span;
let length =
UnresolvedTypeExpression::from_expr(*length, span).unwrap_or_else(|error| {
self.push_err(ResolverError::ParserError(Box::new(error)));
UnresolvedTypeExpression::Constant(0, span)
});
let length = self.convert_expression_type(length);
let (repeated_element, elem_type) = self.elaborate_expression(*repeated_element);
let length_clone = length.clone();
(HirArrayLiteral::Repeated { repeated_element, length }, elem_type, length_clone)
}
};
let constructor = if is_array { HirLiteral::Array } else { HirLiteral::Slice };
let elem_type = Box::new(elem_type);
let typ = if is_array {
Type::Array(Box::new(length), elem_type)
} else {
Type::Slice(elem_type)
};
(HirExpression::Literal(constructor(expr)), typ)
}
fn elaborate_fmt_string(&mut self, str: String, call_expr_span: Span) -> (HirExpression, Type) {
let re = Regex::new(r"\{([a-zA-Z0-9_]+)\}")
.expect("ICE: an invalid regex pattern was used for checking format strings");
let mut fmt_str_idents = Vec::new();
let mut capture_types = Vec::new();
for field in re.find_iter(&str) {
let matched_str = field.as_str();
let ident_name = &matched_str[1..(matched_str.len() - 1)];
let scope_tree = self.scopes.current_scope_tree();
let variable = scope_tree.find(ident_name);
if let Some((old_value, _)) = variable {
old_value.num_times_used += 1;
let ident = HirExpression::Ident(old_value.ident.clone(), None);
let expr_id = self.interner.push_expr(ident);
self.interner.push_expr_location(expr_id, call_expr_span, self.file);
let ident = old_value.ident.clone();
let typ = self.type_check_variable(ident, expr_id, None);
self.interner.push_expr_type(expr_id, typ.clone());
capture_types.push(typ);
fmt_str_idents.push(expr_id);
} else if ident_name.parse::<usize>().is_ok() {
self.push_err(ResolverError::NumericConstantInFormatString {
name: ident_name.to_owned(),
span: call_expr_span,
});
} else {
self.push_err(ResolverError::VariableNotDeclared {
name: ident_name.to_owned(),
span: call_expr_span,
});
}
}
let len = Type::Constant(str.len() as u32);
let typ = Type::FmtString(Box::new(len), Box::new(Type::Tuple(capture_types)));
(HirExpression::Literal(HirLiteral::FmtStr(str, fmt_str_idents)), typ)
}
fn elaborate_prefix(&mut self, prefix: PrefixExpression, span: Span) -> (ExprId, Type) {
let rhs_span = prefix.rhs.span;
let (rhs, rhs_type) = self.elaborate_expression(prefix.rhs);
let trait_id = self.interner.get_prefix_operator_trait_method(&prefix.operator);
let operator = prefix.operator;
if let UnaryOp::MutableReference = operator {
self.check_can_mutate(rhs, rhs_span);
}
let expr =
HirExpression::Prefix(HirPrefixExpression { operator, rhs, trait_method_id: trait_id });
let expr_id = self.interner.push_expr(expr);
self.interner.push_expr_location(expr_id, span, self.file);
let result = self.prefix_operand_type_rules(&operator, &rhs_type, span);
let typ = self.handle_operand_type_rules_result(result, &rhs_type, trait_id, expr_id, span);
self.interner.push_expr_type(expr_id, typ.clone());
(expr_id, typ)
}
fn check_can_mutate(&mut self, expr_id: ExprId, span: Span) {
let expr = self.interner.expression(&expr_id);
match expr {
HirExpression::Ident(hir_ident, _) => {
let definition = self.interner.definition(hir_ident.id);
if !definition.mutable {
self.push_err(TypeCheckError::CannotMutateImmutableVariable {
name: definition.name.clone(),
span,
});
}
}
HirExpression::MemberAccess(member_access) => {
self.check_can_mutate(member_access.lhs, span);
}
_ => (),
}
}
fn elaborate_index(&mut self, index_expr: IndexExpression) -> (HirExpression, Type) {
let span = index_expr.index.span;
let (index, index_type) = self.elaborate_expression(index_expr.index);
let expected = self.polymorphic_integer_or_field();
self.unify(&index_type, &expected, || TypeCheckError::TypeMismatch {
expected_typ: "an integer".to_owned(),
expr_typ: index_type.to_string(),
expr_span: span,
});
// When writing `a[i]`, if `a : &mut ...` then automatically dereference `a` as many
// times as needed to get the underlying array.
let lhs_span = index_expr.collection.span;
let (lhs, lhs_type) = self.elaborate_expression(index_expr.collection);
let (collection, lhs_type) = self.insert_auto_dereferences(lhs, lhs_type);
let typ = match lhs_type.follow_bindings() {
// XXX: We can check the array bounds here also, but it may be better to constant fold first
// and have ConstId instead of ExprId for constants
Type::Array(_, base_type) => *base_type,
Type::Slice(base_type) => *base_type,
Type::Error => Type::Error,
typ => {
self.push_err(TypeCheckError::TypeMismatch {
expected_typ: "Array".to_owned(),
expr_typ: typ.to_string(),
expr_span: lhs_span,
});
Type::Error
}
};
let expr = HirExpression::Index(HirIndexExpression { collection, index });
(expr, typ)
}
fn elaborate_call(&mut self, call: CallExpression, span: Span) -> (HirExpression, Type) {
let (func, func_type) = self.elaborate_expression(*call.func);
let mut arguments = Vec::with_capacity(call.arguments.len());
let args = vecmap(call.arguments, |arg| {
let span = arg.span;
let (arg, typ) = if call.is_macro_call {
self.elaborate_in_comptime_context(|this| this.elaborate_expression(arg))
} else {
self.elaborate_expression(arg)
};
arguments.push(arg);
(typ, arg, span)
});
// Avoid cloning arguments unless this is a macro call
let mut comptime_args = Vec::new();
if call.is_macro_call {
comptime_args = arguments.clone();
}
let location = Location::new(span, self.file);
let is_macro_call = call.is_macro_call;
let hir_call = HirCallExpression { func, arguments, location, is_macro_call };
let mut typ = self.type_check_call(&hir_call, func_type, args, span);
if is_macro_call {
if self.in_comptime_context() {
typ = self.interner.next_type_variable();
} else {
return self
.call_macro(func, comptime_args, location, typ)
.unwrap_or_else(|| (HirExpression::Error, Type::Error));
}
}
(HirExpression::Call(hir_call), typ)
}
fn elaborate_method_call(
&mut self,
method_call: MethodCallExpression,
span: Span,
) -> (HirExpression, Type) {
let object_span = method_call.object.span;
let (mut object, mut object_type) = self.elaborate_expression(method_call.object);
object_type = object_type.follow_bindings();
let method_name_span = method_call.method_name.span();
let method_name = method_call.method_name.0.contents.as_str();
match self.lookup_method(&object_type, method_name, span) {
Some(method_ref) => {
// Automatically add `&mut` if the method expects a mutable reference and
// the object is not already one.
let func_id = match &method_ref {
HirMethodReference::FuncId(func_id) => *func_id,
HirMethodReference::TraitMethodId(method_id, _) => {
let id = self.interner.trait_method_id(*method_id);
let definition = self.interner.definition(id);
let DefinitionKind::Function(func_id) = definition.kind else {
unreachable!("Expected trait function to be a DefinitionKind::Function")
};
func_id
}
};
let generics = if func_id != FuncId::dummy_id() {
let function_type = self.interner.function_meta(&func_id).typ.clone();
self.try_add_mutable_reference_to_object(
&function_type,
&mut object_type,
&mut object,
);
self.resolve_function_turbofish_generics(&func_id, method_call.generics, span)
} else {
None
};
// These arguments will be given to the desugared function call.
// Compared to the method arguments, they also contain the object.
let mut function_args = Vec::with_capacity(method_call.arguments.len() + 1);
let mut arguments = Vec::with_capacity(method_call.arguments.len());
function_args.push((object_type.clone(), object, object_span));
for arg in method_call.arguments {
let span = arg.span;
let (arg, typ) = self.elaborate_expression(arg);
arguments.push(arg);
function_args.push((typ, arg, span));
}
let call_span = Span::from(object_span.start()..method_name_span.end());
let location = Location::new(call_span, self.file);
let method = method_call.method_name;
let turbofish_generics = generics.clone();
let is_macro_call = method_call.is_macro_call;
let method_call =
HirMethodCallExpression { method, object, arguments, location, generics };
// Desugar the method call into a normal, resolved function call
// so that the backend doesn't need to worry about methods
// TODO: update object_type here?
let ((function_id, function_name), function_call) = method_call.into_function_call(
method_ref,
object_type,
is_macro_call,
location,
self.interner,
);
let func_type =
self.type_check_variable(function_name, function_id, turbofish_generics);
self.interner.push_expr_type(function_id, func_type.clone());
self.interner
.add_function_reference(func_id, Location::new(method_name_span, self.file));
// Type check the new call now that it has been changed from a method call
// to a function call. This way we avoid duplicating code.
let typ = self.type_check_call(&function_call, func_type, function_args, span);
(HirExpression::Call(function_call), typ)
}
None => (HirExpression::Error, Type::Error),
}
}
fn elaborate_constructor(
&mut self,
constructor: ConstructorExpression,
) -> (HirExpression, Type) {
let span = constructor.typ.span;
// A constructor type can either be a Path or an interned UnresolvedType.
// We represent both as UnresolvedType (with Path being a Named UnresolvedType)
// and error if we don't get a Named path.
let mut typ = constructor.typ.typ;
if let UnresolvedTypeData::Interned(id) = typ {
typ = self.interner.get_unresolved_type_data(id).clone();
}
let UnresolvedTypeData::Named(mut path, generics, _) = typ else {
self.push_err(ResolverError::NonStructUsedInConstructor { typ: typ.to_string(), span });
return (HirExpression::Error, Type::Error);
};
let last_segment = path.segments.last_mut().unwrap();
if !generics.ordered_args.is_empty() {
last_segment.generics = Some(generics.ordered_args);
}
let exclude_last_segment = true;
self.check_unsupported_turbofish_usage(&path, exclude_last_segment);
let last_segment = path.last_segment();
let is_self_type = last_segment.ident.is_self_type_name();
let (r#type, struct_generics) = if let Some(struct_id) = constructor.struct_type {
let typ = self.interner.get_struct(struct_id);
let generics = typ.borrow().instantiate(self.interner);
(typ, generics)
} else {
match self.lookup_type_or_error(path) {
Some(Type::Struct(r#type, struct_generics)) => (r#type, struct_generics),
Some(typ) => {
self.push_err(ResolverError::NonStructUsedInConstructor {
typ: typ.to_string(),
span,
});
return (HirExpression::Error, Type::Error);
}
None => return (HirExpression::Error, Type::Error),
}
};
let turbofish_span = last_segment.turbofish_span();
let struct_generics = self.resolve_struct_turbofish_generics(
&r#type.borrow(),
struct_generics,
last_segment.generics,
turbofish_span,
);
let struct_type = r#type.clone();
let generics = struct_generics.clone();
let fields = constructor.fields;
let field_types = r#type.borrow().get_fields(&struct_generics);
let fields =
self.resolve_constructor_expr_fields(struct_type.clone(), field_types, fields, span);
let expr = HirExpression::Constructor(HirConstructorExpression {
fields,
r#type,
struct_generics,
});
let struct_id = struct_type.borrow().id;
let reference_location = Location::new(last_segment.ident.span(), self.file);
self.interner.add_struct_reference(struct_id, reference_location, is_self_type);
(expr, Type::Struct(struct_type, generics))
}
/// Resolve all the fields of a struct constructor expression.
/// Ensures all fields are present, none are repeated, and all
/// are part of the struct.
fn resolve_constructor_expr_fields(
&mut self,
struct_type: Shared<StructType>,
field_types: Vec<(String, Type)>,
fields: Vec<(Ident, Expression)>,
span: Span,
) -> Vec<(Ident, ExprId)> {
let mut ret = Vec::with_capacity(fields.len());
let mut seen_fields = HashSet::default();
let mut unseen_fields = struct_type.borrow().field_names();
for (field_name, field) in fields {
let expected_field_with_index = field_types
.iter()
.enumerate()
.find(|(_, (name, _))| name == &field_name.0.contents);
let expected_index = expected_field_with_index.map(|(index, _)| index);
let expected_type =
expected_field_with_index.map(|(_, (_, typ))| typ).unwrap_or(&Type::Error);
let field_span = field.span;
let (resolved, field_type) = self.elaborate_expression(field);
if unseen_fields.contains(&field_name) {
unseen_fields.remove(&field_name);
seen_fields.insert(field_name.clone());
self.unify_with_coercions(&field_type, expected_type, resolved, field_span, || {
TypeCheckError::TypeMismatch {
expected_typ: expected_type.to_string(),
expr_typ: field_type.to_string(),
expr_span: field_span,
}
});
} else if seen_fields.contains(&field_name) {
// duplicate field
self.push_err(ResolverError::DuplicateField { field: field_name.clone() });
} else {
// field not required by struct
self.push_err(ResolverError::NoSuchField {
field: field_name.clone(),
struct_definition: struct_type.borrow().name.clone(),
});
}
if let Some(expected_index) = expected_index {
self.interner.add_struct_member_reference(
struct_type.borrow().id,
expected_index,
Location::new(field_name.span(), self.file),
);
}
ret.push((field_name, resolved));
}
if !unseen_fields.is_empty() {
self.push_err(ResolverError::MissingFields {
span,
missing_fields: unseen_fields.into_iter().map(|field| field.to_string()).collect(),
struct_definition: struct_type.borrow().name.clone(),
});
}
ret
}
fn elaborate_member_access(
&mut self,
access: MemberAccessExpression,
span: Span,
) -> (ExprId, Type) {
let (lhs, lhs_type) = self.elaborate_expression(access.lhs);
let rhs = access.rhs;
let rhs_span = rhs.span();
// `is_offset` is only used when lhs is a reference and we want to return a reference to rhs
let access = HirMemberAccess { lhs, rhs, is_offset: false };
let expr_id = self.intern_expr(HirExpression::MemberAccess(access.clone()), span);
let typ = self.type_check_member_access(access, expr_id, lhs_type, rhs_span);
self.interner.push_expr_type(expr_id, typ.clone());
(expr_id, typ)
}
pub fn intern_expr(&mut self, expr: HirExpression, span: Span) -> ExprId {
let id = self.interner.push_expr(expr);
self.interner.push_expr_location(id, span, self.file);
id
}
fn elaborate_cast(&mut self, cast: CastExpression, span: Span) -> (HirExpression, Type) {
let (lhs, lhs_type) = self.elaborate_expression(cast.lhs);
let r#type = self.resolve_type(cast.r#type);
let result = self.check_cast(&lhs_type, &r#type, span);
let expr = HirExpression::Cast(HirCastExpression { lhs, r#type });
(expr, result)
}
fn elaborate_infix(&mut self, infix: InfixExpression, span: Span) -> (ExprId, Type) {
let (lhs, lhs_type) = self.elaborate_expression(infix.lhs);
let (rhs, rhs_type) = self.elaborate_expression(infix.rhs);
let trait_id = self.interner.get_operator_trait_method(infix.operator.contents);
let operator = HirBinaryOp::new(infix.operator, self.file);
let expr = HirExpression::Infix(HirInfixExpression {
lhs,
operator,
trait_method_id: trait_id,
rhs,
});
let expr_id = self.interner.push_expr(expr);
self.interner.push_expr_location(expr_id, span, self.file);
let result = self.infix_operand_type_rules(&lhs_type, &operator, &rhs_type, span);
let typ =
self.handle_operand_type_rules_result(result, &lhs_type, Some(trait_id), expr_id, span);
self.interner.push_expr_type(expr_id, typ.clone());
(expr_id, typ)
}
fn handle_operand_type_rules_result(
&mut self,
result: Result<(Type, bool), TypeCheckError>,
operand_type: &Type,
trait_id: Option<TraitMethodId>,
expr_id: ExprId,
span: Span,
) -> Type {
match result {
Ok((typ, use_impl)) => {
if use_impl {
let trait_id =
trait_id.expect("ice: expected some trait_id when use_impl is true");
// Delay checking the trait constraint until the end of the function.
// Checking it now could bind an unbound type variable to any type
// that implements the trait.
let constraint = TraitConstraint {
typ: operand_type.clone(),
trait_id: trait_id.trait_id,
trait_generics: TraitGenerics::default(),
span,
};
self.push_trait_constraint(constraint, expr_id);
self.type_check_operator_method(expr_id, trait_id, operand_type, span);
}
typ
}
Err(error) => {
self.push_err(error);
Type::Error
}
}
}
fn elaborate_if(&mut self, if_expr: IfExpression) -> (HirExpression, Type) {
let expr_span = if_expr.condition.span;
let (condition, cond_type) = self.elaborate_expression(if_expr.condition);
let (consequence, mut ret_type) = self.elaborate_expression(if_expr.consequence);
self.unify(&cond_type, &Type::Bool, || TypeCheckError::TypeMismatch {
expected_typ: Type::Bool.to_string(),
expr_typ: cond_type.to_string(),
expr_span,
});
let alternative = if_expr.alternative.map(|alternative| {
let expr_span = alternative.span;
let (else_, else_type) = self.elaborate_expression(alternative);
self.unify(&ret_type, &else_type, || {
let err = TypeCheckError::TypeMismatch {
expected_typ: ret_type.to_string(),
expr_typ: else_type.to_string(),
expr_span,
};
let context = if ret_type == Type::Unit {
"Are you missing a semicolon at the end of your 'else' branch?"
} else if else_type == Type::Unit {
"Are you missing a semicolon at the end of the first block of this 'if'?"
} else {
"Expected the types of both if branches to be equal"
};
err.add_context(context)
});
else_
});
if alternative.is_none() {
ret_type = Type::Unit;
}
let if_expr = HirIfExpression { condition, consequence, alternative };
(HirExpression::If(if_expr), ret_type)
}
fn elaborate_tuple(&mut self, tuple: Vec<Expression>) -> (HirExpression, Type) {
let mut element_ids = Vec::with_capacity(tuple.len());
let mut element_types = Vec::with_capacity(tuple.len());
for element in tuple {
let (id, typ) = self.elaborate_expression(element);
element_ids.push(id);
element_types.push(typ);
}
(HirExpression::Tuple(element_ids), Type::Tuple(element_types))
}
fn elaborate_lambda(&mut self, lambda: Lambda) -> (HirExpression, Type) {
self.push_scope();
let scope_index = self.scopes.current_scope_index();
self.lambda_stack.push(LambdaContext { captures: Vec::new(), scope_index });
let mut arg_types = Vec::with_capacity(lambda.parameters.len());
let parameters = vecmap(lambda.parameters, |(pattern, typ)| {
let parameter = DefinitionKind::Local(None);
let typ = self.resolve_inferred_type(typ);
arg_types.push(typ.clone());
(self.elaborate_pattern(pattern, typ.clone(), parameter), typ)
});
let return_type = self.resolve_inferred_type(lambda.return_type);
let body_span = lambda.body.span;
let (body, body_type) = self.elaborate_expression(lambda.body);
let lambda_context = self.lambda_stack.pop().unwrap();
self.pop_scope();
self.unify(&body_type, &return_type, || TypeCheckError::TypeMismatch {
expected_typ: return_type.to_string(),
expr_typ: body_type.to_string(),
expr_span: body_span,
});
let captured_vars = vecmap(&lambda_context.captures, |capture| {
self.interner.definition_type(capture.ident.id)
});
let env_type =
if captured_vars.is_empty() { Type::Unit } else { Type::Tuple(captured_vars) };
let captures = lambda_context.captures;
let expr = HirExpression::Lambda(HirLambda { parameters, return_type, body, captures });
(expr, Type::Function(arg_types, Box::new(body_type), Box::new(env_type), false))
}
fn elaborate_quote(&mut self, mut tokens: Tokens, span: Span) -> (HirExpression, Type) {
tokens = self.find_unquoted_exprs_tokens(tokens);
if self.in_comptime_context() {
(HirExpression::Quote(tokens), Type::Quoted(QuotedType::Quoted))
} else {
self.push_err(ResolverError::QuoteInRuntimeCode { span });
(HirExpression::Error, Type::Quoted(QuotedType::Quoted))
}
}
fn elaborate_comptime_block(&mut self, block: BlockExpression, span: Span) -> (ExprId, Type) {
let (block, _typ) =
self.elaborate_in_comptime_context(|this| this.elaborate_block_expression(block));
let mut interpreter = self.setup_interpreter();
let value = interpreter.evaluate_block(block);
let (id, typ) = self.inline_comptime_value(value, span);
let location = self.interner.id_location(id);
self.debug_comptime(location, |interner| {
interner.expression(&id).to_display_ast(interner, location.span).kind
});
(id, typ)
}
pub fn inline_comptime_value(
&mut self,
value: Result<comptime::Value, InterpreterError>,
span: Span,
) -> (ExprId, Type) {
let make_error = |this: &mut Self, error: InterpreterError| {
this.errors.push(error.into_compilation_error_pair());
let error = this.interner.push_expr(HirExpression::Error);
this.interner.push_expr_location(error, span, this.file);
(error, Type::Error)
};
let value = match value {
Ok(value) => value,
Err(error) => return make_error(self, error),
};
let location = Location::new(span, self.file);
match value.into_expression(self.interner, location) {
Ok(new_expr) => self.elaborate_expression(new_expr),
Err(error) => make_error(self, error),
}
}
fn try_get_comptime_function(
&mut self,
func: ExprId,
location: Location,
) -> Result<Option<FuncId>, ResolverError> {
match self.interner.expression(&func) {
HirExpression::Ident(ident, _generics) => {
if let Some(definition) = self.interner.try_definition(ident.id) {
if let DefinitionKind::Function(function) = definition.kind {
let meta = self.interner.function_modifiers(&function);
if meta.is_comptime {
Ok(Some(function))
} else {
Err(ResolverError::MacroIsNotComptime { span: location.span })
}
} else {
Err(ResolverError::InvalidSyntaxInMacroCall { span: location.span })
}
} else {
// Assume a name resolution error has already been issued
Ok(None)
}
}
_ => Err(ResolverError::InvalidSyntaxInMacroCall { span: location.span }),
}
}
/// Call a macro function and inlines its code at the call site.
/// This will also perform a type check to ensure that the return type is an `Expr` value.
fn call_macro(
&mut self,
func: ExprId,
arguments: Vec<ExprId>,
location: Location,
return_type: Type,
) -> Option<(HirExpression, Type)> {
self.unify(&return_type, &Type::Quoted(QuotedType::Quoted), || {
TypeCheckError::MacroReturningNonExpr { typ: return_type.clone(), span: location.span }
});
let function = match self.try_get_comptime_function(func, location) {
Ok(function) => function?,
Err(error) => {
self.push_err(error);
return None;
}
};
let file = self.file;
let mut interpreter = self.setup_interpreter();
let mut comptime_args = Vec::new();
let mut errors = Vec::new();
for argument in arguments {
match interpreter.evaluate(argument) {
Ok(arg) => {
let location = interpreter.elaborator.interner.expr_location(&argument);
comptime_args.push((arg, location));
}
Err(error) => errors.push((error.into(), file)),
}
}
let bindings = interpreter.elaborator.interner.get_instantiation_bindings(func).clone();
let result = interpreter.call_function(function, comptime_args, bindings, location);
if !errors.is_empty() {
self.errors.append(&mut errors);
return None;
}
let (expr_id, typ) = self.inline_comptime_value(result, location.span);
Some((self.interner.expression(&expr_id), typ))
}
}