forked from MarlinFirmware/Marlin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbbl.cpp
434 lines (371 loc) · 14.5 KB
/
bbl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#include "../bedlevel.h"
#include "../../../module/motion.h"
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../../core/debug_out.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../../lcd/extui/ui_api.h"
#endif
LevelingBilinear bedlevel;
xy_pos_t LevelingBilinear::grid_spacing,
LevelingBilinear::grid_start;
xy_float_t LevelingBilinear::grid_factor;
bed_mesh_t LevelingBilinear::z_values;
xy_pos_t LevelingBilinear::cached_rel;
xy_int8_t LevelingBilinear::cached_g;
/**
* Extrapolate a single point from its neighbors
*/
void LevelingBilinear::extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
if (!isnan(z_values[x][y])) return;
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOPGM("Extrapolate [");
if (x < 10) DEBUG_CHAR(' ');
DEBUG_ECHO(x);
DEBUG_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
DEBUG_CHAR(' ');
if (y < 10) DEBUG_CHAR(' ');
DEBUG_ECHO(y);
DEBUG_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
DEBUG_ECHOLNPGM("]");
}
// Get X neighbors, Y neighbors, and XY neighbors
const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
b1 = z_values[x ][y1], b2 = z_values[x ][y2],
c1 = z_values[x1][y1], c2 = z_values[x2][y2];
// Treat far unprobed points as zero, near as equal to far
if (isnan(a2)) a2 = 0.0;
if (isnan(a1)) a1 = a2;
if (isnan(b2)) b2 = 0.0;
if (isnan(b1)) b1 = b2;
if (isnan(c2)) c2 = 0.0;
if (isnan(c1)) c1 = c2;
const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
// Take the average instead of the median
z_values[x][y] = (a + b + c) / 3.0;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
// Median is robust (ignores outliers).
// z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
// : ((c < b) ? b : (a < c) ? a : c);
}
//Enable this if your SCARA uses 180° of total area
//#define EXTRAPOLATE_FROM_EDGE
#if ENABLED(EXTRAPOLATE_FROM_EDGE)
#if (GRID_MAX_POINTS_X) < (GRID_MAX_POINTS_Y)
#define HALF_IN_X
#elif (GRID_MAX_POINTS_Y) < (GRID_MAX_POINTS_X)
#define HALF_IN_Y
#endif
#endif
void LevelingBilinear::reset() {
grid_start.reset();
grid_spacing.reset();
GRID_LOOP(x, y) {
z_values[x][y] = NAN;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, 0));
}
}
void LevelingBilinear::set_grid(const xy_pos_t& _grid_spacing, const xy_pos_t& _grid_start) {
grid_spacing = _grid_spacing;
grid_start = _grid_start;
grid_factor = grid_spacing.reciprocal();
}
/**
* Fill in the unprobed points (corners of circular print surface)
* using linear extrapolation, away from the center.
*/
void LevelingBilinear::extrapolate_unprobed_bed_level() {
#ifdef HALF_IN_X
constexpr uint8_t ctrx2 = 0, xend = GRID_MAX_POINTS_X - 1;
#else
constexpr uint8_t ctrx1 = (GRID_MAX_CELLS_X) / 2, // left-of-center
ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
xend = ctrx1;
#endif
#ifdef HALF_IN_Y
constexpr uint8_t ctry2 = 0, yend = GRID_MAX_POINTS_Y - 1;
#else
constexpr uint8_t ctry1 = (GRID_MAX_CELLS_Y) / 2, // top-of-center
ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
yend = ctry1;
#endif
LOOP_LE_N(xo, xend)
LOOP_LE_N(yo, yend) {
uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
#ifndef HALF_IN_X
const uint8_t x1 = ctrx1 - xo;
#endif
#ifndef HALF_IN_Y
const uint8_t y1 = ctry1 - yo;
#ifndef HALF_IN_X
extrapolate_one_point(x1, y1, +1, +1); // left-below + +
#endif
extrapolate_one_point(x2, y1, -1, +1); // right-below - +
#endif
#ifndef HALF_IN_X
extrapolate_one_point(x1, y2, +1, -1); // left-above + -
#endif
extrapolate_one_point(x2, y2, -1, -1); // right-above - -
}
}
void LevelingBilinear::print_leveling_grid(const bed_mesh_t* _z_values/*=nullptr*/) {
// print internal grid(s) or just the one passed as a parameter
SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3, _z_values ? *_z_values[0] : z_values[0]);
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
if (!_z_values) {
SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5, z_values_virt[0]);
}
#endif
}
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
#define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
#define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
float LevelingBilinear::z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
xy_pos_t LevelingBilinear::grid_spacing_virt;
xy_float_t LevelingBilinear::grid_factor_virt;
#define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
float LevelingBilinear::virt_coord(const uint8_t x, const uint8_t y) {
uint8_t ep = 0, ip = 1;
if (x > (GRID_MAX_POINTS_X) + 1 || y > (GRID_MAX_POINTS_Y) + 1) {
// The requested point requires extrapolating two points beyond the mesh.
// These values are only requested for the edges of the mesh, which are always an actual mesh point,
// and do not require interpolation. When interpolation is not needed, this "Mesh + 2" point is
// cancelled out in virt_cmr and does not impact the result. Return 0.0 rather than
// making this function more complex by extrapolating two points.
return 0.0;
}
if (!x || x == ABL_TEMP_POINTS_X - 1) {
if (x) {
ep = (GRID_MAX_POINTS_X) - 1;
ip = GRID_MAX_CELLS_X - 1;
}
if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
return LINEAR_EXTRAPOLATION(
z_values[ep][y - 1],
z_values[ip][y - 1]
);
else
return LINEAR_EXTRAPOLATION(
virt_coord(ep + 1, y),
virt_coord(ip + 1, y)
);
}
if (!y || y == ABL_TEMP_POINTS_Y - 1) {
if (y) {
ep = (GRID_MAX_POINTS_Y) - 1;
ip = GRID_MAX_CELLS_Y - 1;
}
if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
return LINEAR_EXTRAPOLATION(
z_values[x - 1][ep],
z_values[x - 1][ip]
);
else
return LINEAR_EXTRAPOLATION(
virt_coord(x, ep + 1),
virt_coord(x, ip + 1)
);
}
return z_values[x - 1][y - 1];
}
float LevelingBilinear::virt_cmr(const float p[4], const uint8_t i, const float t) {
return (
p[i-1] * -t * sq(1 - t)
+ p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
+ p[i+1] * t * (1 + 4 * t - 3 * sq(t))
- p[i+2] * sq(t) * (1 - t)
) * 0.5f;
}
float LevelingBilinear::virt_2cmr(const uint8_t x, const uint8_t y, const_float_t tx, const_float_t ty) {
float row[4], column[4];
LOOP_L_N(i, 4) {
LOOP_L_N(j, 4) {
column[j] = virt_coord(i + x - 1, j + y - 1);
}
row[i] = virt_cmr(column, 1, ty);
}
return virt_cmr(row, 1, tx);
}
void LevelingBilinear::subdivide_mesh() {
grid_spacing_virt = grid_spacing / (BILINEAR_SUBDIVISIONS);
grid_factor_virt = grid_spacing_virt.reciprocal();
LOOP_L_N(y, GRID_MAX_POINTS_Y)
LOOP_L_N(x, GRID_MAX_POINTS_X)
LOOP_L_N(ty, BILINEAR_SUBDIVISIONS)
LOOP_L_N(tx, BILINEAR_SUBDIVISIONS) {
if ((ty && y == (GRID_MAX_POINTS_Y) - 1) || (tx && x == (GRID_MAX_POINTS_X) - 1))
continue;
z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
virt_2cmr(x + 1, y + 1, (float)tx / (BILINEAR_SUBDIVISIONS), (float)ty / (BILINEAR_SUBDIVISIONS));
}
}
#endif // ABL_BILINEAR_SUBDIVISION
// Refresh after other values have been updated
void LevelingBilinear::refresh_bed_level() {
TERN_(ABL_BILINEAR_SUBDIVISION, subdivide_mesh());
cached_rel.x = cached_rel.y = -999.999;
cached_g.x = cached_g.y = -99;
}
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
#define ABL_BG_SPACING(A) grid_spacing_virt.A
#define ABL_BG_FACTOR(A) grid_factor_virt.A
#define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
#define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
#define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
#else
#define ABL_BG_SPACING(A) grid_spacing.A
#define ABL_BG_FACTOR(A) grid_factor.A
#define ABL_BG_POINTS_X GRID_MAX_POINTS_X
#define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
#define ABL_BG_GRID(X,Y) z_values[X][Y]
#endif
// Get the Z adjustment for non-linear bed leveling
float LevelingBilinear::get_z_correction(const xy_pos_t &raw) {
static float z1, d2, z3, d4, L, D;
static xy_pos_t ratio;
// Whole units for the grid line indices. Constrained within bounds.
static xy_int8_t thisg, nextg;
// XY relative to the probed area
xy_pos_t rel = raw - grid_start.asFloat();
#if ENABLED(EXTRAPOLATE_BEYOND_GRID)
#define FAR_EDGE_OR_BOX 2 // Keep using the last grid box
#else
#define FAR_EDGE_OR_BOX 1 // Just use the grid far edge
#endif
if (cached_rel.x != rel.x) {
cached_rel.x = rel.x;
ratio.x = rel.x * ABL_BG_FACTOR(x);
const float gx = constrain(FLOOR(ratio.x), 0, ABL_BG_POINTS_X - (FAR_EDGE_OR_BOX));
ratio.x -= gx; // Subtract whole to get the ratio within the grid box
#if DISABLED(EXTRAPOLATE_BEYOND_GRID)
// Beyond the grid maintain height at grid edges
NOLESS(ratio.x, 0); // Never <0 (>1 is ok when nextg.x==thisg.x)
#endif
thisg.x = gx;
nextg.x = _MIN(thisg.x + 1, ABL_BG_POINTS_X - 1);
}
if (cached_rel.y != rel.y || cached_g.x != thisg.x) {
if (cached_rel.y != rel.y) {
cached_rel.y = rel.y;
ratio.y = rel.y * ABL_BG_FACTOR(y);
const float gy = constrain(FLOOR(ratio.y), 0, ABL_BG_POINTS_Y - (FAR_EDGE_OR_BOX));
ratio.y -= gy;
#if DISABLED(EXTRAPOLATE_BEYOND_GRID)
// Beyond the grid maintain height at grid edges
NOLESS(ratio.y, 0); // Never < 0.0. (> 1.0 is ok when nextg.y==thisg.y.)
#endif
thisg.y = gy;
nextg.y = _MIN(thisg.y + 1, ABL_BG_POINTS_Y - 1);
}
if (cached_g != thisg) {
cached_g = thisg;
// Z at the box corners
z1 = ABL_BG_GRID(thisg.x, thisg.y); // left-front
d2 = ABL_BG_GRID(thisg.x, nextg.y) - z1; // left-back (delta)
z3 = ABL_BG_GRID(nextg.x, thisg.y); // right-front
d4 = ABL_BG_GRID(nextg.x, nextg.y) - z3; // right-back (delta)
}
// Bilinear interpolate. Needed since rel.y or thisg.x has changed.
L = z1 + d2 * ratio.y; // Linear interp. LF -> LB
const float R = z3 + d4 * ratio.y; // Linear interp. RF -> RB
D = R - L;
}
const float offset = L + ratio.x * D; // the offset almost always changes
/*
static float last_offset = 0;
if (ABS(last_offset - offset) > 0.2) {
SERIAL_ECHOLNPGM("Sudden Shift at x=", rel.x, " / ", grid_spacing.x, " -> thisg.x=", thisg.x);
SERIAL_ECHOLNPGM(" y=", rel.y, " / ", grid_spacing.y, " -> thisg.y=", thisg.y);
SERIAL_ECHOLNPGM(" ratio.x=", ratio.x, " ratio.y=", ratio.y);
SERIAL_ECHOLNPGM(" z1=", z1, " z2=", z2, " z3=", z3, " z4=", z4);
SERIAL_ECHOLNPGM(" L=", L, " R=", R, " offset=", offset);
}
last_offset = offset;
//*/
return offset;
}
#if IS_CARTESIAN && DISABLED(SEGMENT_LEVELED_MOVES)
#define CELL_INDEX(A,V) ((V - grid_start.A) * ABL_BG_FACTOR(A))
/**
* Prepare a bilinear-leveled linear move on Cartesian,
* splitting the move where it crosses grid borders.
*/
void LevelingBilinear::line_to_destination(const_feedRate_t scaled_fr_mm_s, uint16_t x_splits, uint16_t y_splits) {
// Get current and destination cells for this line
xy_int_t c1 { CELL_INDEX(x, current_position.x), CELL_INDEX(y, current_position.y) },
c2 { CELL_INDEX(x, destination.x), CELL_INDEX(y, destination.y) };
LIMIT(c1.x, 0, ABL_BG_POINTS_X - 2);
LIMIT(c1.y, 0, ABL_BG_POINTS_Y - 2);
LIMIT(c2.x, 0, ABL_BG_POINTS_X - 2);
LIMIT(c2.y, 0, ABL_BG_POINTS_Y - 2);
// Start and end in the same cell? No split needed.
if (c1 == c2) {
current_position = destination;
line_to_current_position(scaled_fr_mm_s);
return;
}
#define LINE_SEGMENT_END(A) (current_position.A + (destination.A - current_position.A) * normalized_dist)
float normalized_dist;
xyze_pos_t end;
const xy_int8_t gc { _MAX(c1.x, c2.x), _MAX(c1.y, c2.y) };
// Crosses on the X and not already split on this X?
// The x_splits flags are insurance against rounding errors.
if (c2.x != c1.x && TEST(x_splits, gc.x)) {
// Split on the X grid line
CBI(x_splits, gc.x);
end = destination;
destination.x = grid_start.x + ABL_BG_SPACING(x) * gc.x;
normalized_dist = (destination.x - current_position.x) / (end.x - current_position.x);
destination.y = LINE_SEGMENT_END(y);
}
// Crosses on the Y and not already split on this Y?
else if (c2.y != c1.y && TEST(y_splits, gc.y)) {
// Split on the Y grid line
CBI(y_splits, gc.y);
end = destination;
destination.y = grid_start.y + ABL_BG_SPACING(y) * gc.y;
normalized_dist = (destination.y - current_position.y) / (end.y - current_position.y);
destination.x = LINE_SEGMENT_END(x);
}
else {
// Must already have been split on these border(s)
// This should be a rare case.
current_position = destination;
line_to_current_position(scaled_fr_mm_s);
return;
}
destination.z = LINE_SEGMENT_END(z);
destination.e = LINE_SEGMENT_END(e);
// Do the split and look for more borders
line_to_destination(scaled_fr_mm_s, x_splits, y_splits);
// Restore destination from stack
destination = end;
line_to_destination(scaled_fr_mm_s, x_splits, y_splits);
}
#endif // IS_CARTESIAN && !SEGMENT_LEVELED_MOVES
#endif // AUTO_BED_LEVELING_BILINEAR