-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
197 lines (169 loc) · 5.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from argparse import ArgumentParser
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping
import traceback
from datetime import datetime
from project.datamodules.fer_dvs import FerDVS
from project.fer_module import FerModule
from project.utils.transforms import DVSTransform
import math
import numpy as np
batch_size = 32
learning_rate = 5e-3
timesteps = 6
epochs = 64
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
data_dir = "data"
global X
def main():
dataset, fold_number, mode, trans = get_args()
transform = DVSTransform(
sensor_size=FerDVS.sensor_size,
timesteps=timesteps,
transforms_list=trans,
concat_time_channels="cnn" in mode,
)
train_set = FerDVS(
save_to=data_dir,
dataset=dataset,
train=True,
fold=fold_number,
transform=transform,
)
train_workers = 8
train_loader = DataLoader(
train_set,
batch_size=batch_size,
shuffle=True,
num_workers=train_workers,
persistent_workers=True
)
for batch in train_loader:
inputs, labels = batch
initial_input = (inputs.cpu().numpy(), labels.cpu().numpy())
break # Sortie après le premier lot
global X
X=initial_input[0]
np.save('X.npy', X)
# Affichage des données d'entrée et des étiquettes
print("Exemple d'inputs:", initial_input[0]) # inputs est le premier élément de initial_input
print("Exemple d'étiquettes:", initial_input[1]) # labels est le deuxième élément de initial_input
val_set = FerDVS(
save_to=data_dir,
dataset=dataset,
train=False,
fold=fold_number,
transform=DVSTransform(
FerDVS.sensor_size,
timesteps=timesteps,
transforms_list=[],
concat_time_channels="cnn" in mode,
),
)
val_workers = 8
val_loader = DataLoader(
val_set, batch_size=batch_size, shuffle=False, num_workers=val_workers,persistent_workers=True
)
print(f"\n\nEXPERIENCE FOR DATASET={dataset} FOLD={fold_number}")
print(f"|TRAIN SET|={len(train_set)}")
print(f"|VAL SET|={len(val_set)}")
acc = train(train_loader, val_loader, fold_number, dataset, trans, mode=mode, initial_input=initial_input)
print(f"accuracy obtained for {mode} on {dataset} fold={fold_number}: {acc}")
def get_args():
parser = ArgumentParser()
parser.add_argument(
"--dataset", type=str, default="CKPlusDVS", choices=FerDVS.available_datasets
)
parser.add_argument("--fold_number", type=int, required=True)
parser.add_argument(
"--edas",
type=str,
default="flip,background_activity,crop,reverse,mirror,event_drop",
help="List of employed event data augmentations. They must be separated by commas. Example: 'transform1,transform2,...,transformN'.",
)
parser.add_argument("--mode", type=str, choices=["snn", "cnn"], default="snn")
args = parser.parse_args()
dataset = args.dataset
fold_number = args.fold_number
mode = args.mode
allowed_transforms = (
"background_activity",
"flip_polarity",
"crop",
"event_drop",
"reverse",
"mirror",
"flip",
)
edas = args.edas.split(",")
for eda in edas:
if eda not in allowed_transforms:
raise ValueError(
f"edas arguments must contain only transforms in the following list: {allowed_transforms}. Got: {eda}."
)
trans = edas
return dataset, fold_number, mode, trans
def train(
train_loader: DataLoader,
val_loader: DataLoader,
fold_number: int,
dataset: str,
trans: list,
mode="snn",
initial_input=None
):
print("Début de la fonction train") # Pour vérifier que cette partie est atteinte
if initial_input is not None:
inputs, labels = initial_input
print(f"Premier lot d'inputs: {inputs.shape}, Premières étiquettes: {labels.shape}")
module = FerModule(
learning_rate=learning_rate,
timesteps=timesteps,
n_classes=6,
epochs=epochs,
mode=mode,
)
checkpoint_callback = pl.callbacks.ModelCheckpoint(
monitor="val_acc", # TODO: select the logged metric to monitor the checkpoint saving
filename=str(fold_number) + "_{epoch:03d}_{val_acc:.4f}",
save_top_k=1,
mode="max",
)
# create trainer
trainer = pl.Trainer(
max_epochs=epochs,
gpus=1 if torch.cuda.is_available() else None, # Indique à PyTorch Lightning d'utiliser les GPUs
callbacks=[
checkpoint_callback,
],
logger=pl.loggers.TensorBoardLogger(
"experiments/", name=f"{dataset}_{fold_number}"
),
log_every_n_steps=5,
default_root_dir=f"experiments/{dataset}",
# precision=16,
)
try:
trainer.fit(module, train_loader, val_loader)
except:
mess = traceback.format_exc()
report = open("errors.txt", "a")
now = datetime.now()
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
report.write(f"{dt_string} ===> {mess}\n=========\n\n")
report.flush()
report.close()
return -1
report = open(f"report_{mode}_{dataset}.txt", "a")
now = datetime.now()
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
report.write(
f"{dt_string} MODE={mode} DATASET={dataset} FOLD={fold_number} ACC={checkpoint_callback.best_model_score} TRANS={trans}\n"
)
report.flush()
report.close()
return checkpoint_callback.best_model_score
if __name__ == "__main__":
main()