forked from forgi86/efficient-calibration-embedded-MPC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkalman.py
193 lines (149 loc) · 5.49 KB
/
kalman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# conda install -c conda-forge slycot
import control
import numpy as np
import scipy as sp
def __first_dim__(X):
if sp.size(X) == 1:
m = 1
else:
m = sp.size(X,0)
return m
def __second_dim__(X):
if sp.size(X) == 1:
m = 1
else:
m = sp.size(X,1)
return m
def kalman_design(A, B, C, D, Qn, Rn, Nn=None, type='predictor'):
""" Design a Kalman filter for the discrete-time system
x_{k+1} = Ax_{k} + Bu_{k} + Gw_{k}
y_{k} = Cx_{k} + Du_{k} + Hw_{k} + v_{k}
with known inputs u and sctochastic disturbances v, w.
In particular, v and w are zero mean, white Gaussian noise sources with
E[vv'] = Qn, E[ww'] = Rn, E['wv'] = Nn
The Kalman filter has structure
\hat x_{k+1} = Ax_{k} + Bu_{k} + L(y_{k} - C\hat x{k} - Du_{k})
\hat y_{k} = Cx_k + Du_k
"""
nx = np.shape(A)[0]
nw = np.shape(Qn)[0] # number of uncontrolled inputs
nu = np.shape(B)[1] - nw # number of controlled inputs
ny = np.shape(C)[0]
if Nn is None:
Nn = np.zeros((nw, ny))
E = np.eye(nx)
Bu = B[:, 0:nu]
Du = D[:, 0:nu]
Bw = B[:, nu:]
Dw = D[:, nu:]
Hn = Dw @ Nn
Rb = Rn + Hn + np.transpose(Hn) + Dw @ Qn @ np.transpose(Dw)
Qb = Bw @ Qn @ np.transpose(Bw)
Nb = Bw @ (Qn @ np.transpose(Dw) + Nn)
# Enforce symmetry
Qb = (Qb + np.transpose(Qb))/2
Rb = (Rb+np.transpose(Rb))/2
P,W,K, = control.dare(np.transpose(A), np.transpose(C), Qb, Rb, Nb, np.transpose(E))
P = np.asarray(P)
K = np.asarray(K)
L = np.transpose(K) # Kalman gain
return L,P,W
def kalman_design_simple(A, B, C, D, Qn, Rn, type='predictor'):
""" Design a Kalman filter for the discrete-time system
x_{k+1} = Ax_{k} + Bu_{k} + Iw_{k}
y_{k} = Cx_{k} + Du_{k} + I v_{k}
with known inputs u and sctochastic disturbances v, w.
In particular, v and w are zero mean, white Gaussian noise sources with
E[vv'] = Qn, E[ww'] = Rn, E['wv'] = 0
The Kalman filter has structure
\hat x_{k+1} = Ax_{k} + Bu_{k} + L(y_{k} - C\hat x{k} - Du_{k})
\hat y_{k} = Cx_k + Du_k
"""
P, W, K, = control.dare(np.transpose(A), np.transpose(C), Qn, Rn)
# L = np.transpose(K) # Kalman gain
P = np.asarray(P)
W = np.asarray(W)
if type == 'filter':
L = P @ np.transpose(C) @ sp.linalg.basic.inv(C @ P @ np.transpose(C) + Rn)
elif type == 'predictor':
L = A @ P @ np.transpose(C) @ sp.linalg.basic.inv(C @ P @np.transpose(C) + Rn)
else:
raise ValueError("Unknown Kalman design type. Specify either filter or predictor!")
return L, P, W
class LinearStateEstimator:
def __init__(self, x0, A, B, C, D, L=None):
self.x = np.copy(x0)
self.y = C @ x0
self.A = A
self.B = B
self.C = C
self.D = D
self.L = L
self.nx = __first_dim__(A)
self.nu = __second_dim__(B) # number of controlled inputs
self.ny = __first_dim__(C)
def out_y(self, u):
return self.y
def predict(self, u):
self.x = self.A @ self.x + self.B @u # x[k+1|k]
self.y = self.C @ self.x #+ self.D @u
return self.x
def update(self, y_meas):
self.x = self.x + self.L @ (y_meas - self.y) # x[k+1|k+1]
return self.x
def predict_update(self, u, y):
self.x = (self.A - self.L @ self.C) @ self.x + self.B @ u + self.L @ y # x[k|k-1] -> x[k+1|k]
self.y = self.C @ self.x #+ self.D @ u
def sim(self, u_seq, x=None):
if x is None:
x = self.x
Np = __first_dim__(u_seq)
nu = __second_dim__(u_seq)
assert(nu == self.nu)
y = np.zeros((Np,self.ny))
x_tmp = x
for i in range(Np):
u_tmp = u_seq[i]
y[i,:] = self.C @ x_tmp + self.D @ u_tmp
x_tmp = self.A @ x_tmp + self.B @ u_tmp
#y[Np] = self.C @ x_tmp + self.D @ u_tmp # not really true for D. Here it is 0 anyways
return y
if __name__ == '__main__':
# Constants #
Ts = 0.2 # sampling time (s)
M = 2 # mass (Kg)
b = 0.3 # friction coefficient (N*s/m)
Ad = np.array([
[1.0, Ts],
[0, 1.0 -b/M*Ts]
])
Bd = np.array([
[0.0],
[Ts/M]])
Cd = np.array([[1, 0]])
Dd = np.array([[0]])
[nx, nu] = Bd.shape # number of states and number or inputs
ny = np.shape(Cd)[0]
## General design ##
Bd_kal = np.hstack([Bd, Bd])
Dd_kal = np.array([[0, 0]])
Q_kal = np.array([[100]]) # nw x nw matrix, w general (here, nw = nu)
R_kal = np.eye(ny) # ny x ny)
L_general,P_general,W_general = kalman_design(Ad, Bd_kal, Cd, Dd_kal, Q_kal, R_kal, type='predictor')
# Simple design
Q_kal = 10 * np.eye(nx)
R_kal = np.eye(ny)
L_simple,P_simple,W_simple = kalman_design_simple(Ad, Bd, Cd, Dd, Q_kal, R_kal, type='predictor')
# Simple design written in general form
Bd_kal = np.hstack([Bd, np.eye(nx)])
Dd_kal = np.hstack([Dd, np.zeros((ny, nx))])
Q_kal = 10 * np.eye(nx)#np.eye(nx) * 100
R_kal = np.eye(ny) * 1
L_gensim,P_gensim,W_gensim = kalman_design_simple(Ad, Bd, Cd, Dd, Q_kal, R_kal, type='predictor')
assert(np.isclose(L_gensim[0], L_simple[0]))
L, _, _ = kalman_design_simple(Ad, Bd, Cd, Dd, Q_kal, R_kal, type='predictor')
x0 = np.zeros(nx)
KF = LinearStateEstimator(x0, Ad, Bd, Cd, Dd, L)
KF.L = L
L_predictor = Ad@P_simple@np.transpose(Cd)/([Cd@P_simple@np.transpose(Cd)+R_kal])
L_filter = P_simple@np.transpose(Cd)/([Cd@P_simple@np.transpose(Cd)+R_kal])