-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
262 lines (228 loc) · 11.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import torch
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
import torch.nn as nn
from models import LinearModel, SimpleConv
from sam.sam import SAM
import torchvision.models as models
from argparse import ArgumentParser
from tqdm import tqdm
import os
# tensorboard
logged = True
try:
from torch.utils.tensorboard import SummaryWriter
except:
# when tensorboard is not installed, don't log.
logged = False
class OptMLProj:
def __init__(self) -> None:
self.params = self._parse()
torch.manual_seed(self.params.seed)
self.device = torch.device(
'cuda' if torch.cuda.is_available() else 'cpu')
assert self.params.model in ['resnet18', 'simpleconv', 'simpleconvbn']
if self.params.model == 'resnet18':
if self.params.batchnorm:
self.model = models.resnet18(pretrained=False).to(self.device)
else:
self.model = models.resnet18(pretrained=False, norm_layer=nn.Identity).to(self.device)
elif self.params.model == 'simpleconv':
self.model = SimpleConv().to(self.device)
elif self.params.model == 'simpleconvbn':
pass
self.transform = self.normalize()
self.trainset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=self.transform)
self.trainloader = torch.utils.data.DataLoader(
self.trainset, batch_size=self.params.batch_size, shuffle=True, num_workers=2)
self.testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=self.transform)
self.testloader = torch.utils.data.DataLoader(self.testset, batch_size=self.params.batch_size,
shuffle=False, num_workers=2)
self.classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
self.init_optimizer()
self.criterion = nn.CrossEntropyLoss()
if self.params.comment == '':
self.params.comment = 'bz_{}_seed_{}_epochs[{}]_model_{}_baseoptim[{}]_secoptim[{}]_norm_{}_batchnorm_{}_lr_{}_momentum_{}_rho_{}_cos_{}'.format(
self.params.batch_size, self.params.seed, self.params.epochs, self.params.model, self.params.baseoptim,
self.params.secoptim, self.params.norm_type, self.params.batchnorm, self.params.lr, self.params.momentum,
self.params.rho, self.params.cosaneal
)
if logged:
self.writer = SummaryWriter(comment=self.params.comment)
def _parse(self):
parser = ArgumentParser(description='OptML Project code for A/SAM ')
parser.add_argument(
'--batch_size', help='Batch size for training/testing', type=int)
parser.add_argument('--seed', type=int,
help='seed for experiments', default=0)
parser.add_argument(
'--sigma', help='sigma of gaussian noise', type=float, default=0.01)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--comment', type=str,
help='training information to save in tb', default='')
parser.add_argument('--model', type=str,
help='model used in the experiment')
parser.add_argument('--baseoptim', type=str,
help='base optimizer type used in experiment')
parser.add_argument('--secoptim', type=str,
help='secondary optimizer type used in experiment')
parser.add_argument('--norm_type', type=str,
help='normalization type')
parser.add_argument('--lr', type=float,
help='learning rate', default=0.01)
parser.add_argument('--wd', type=float,
help='weight_decay', default=0.0005)
parser.add_argument('--momentum', type=float, help='momentum', default=0)
parser.add_argument('--rho', type=float,
help='rho in a/sam', default=0.05)
parser.add_argument('--batchnorm', action='store_true',
help="using batchnorm enabled by default")
parser.add_argument('--no-batchnorm', dest='batchnorm',
action='store_false', help="disable batchnorm")
parser.set_defaults(batchnorm=True)
parser.add_argument('--cosaneal', action='store_true',
help="using batchnorm enabled by default")
parser.add_argument('--no-cosaneal', dest='batchnorm',
action='store_false', help="disable batchnorm")
parser.set_defaults(cosaneal=False)
return parser.parse_args()
def normalize(self):
type = self.params.norm_type
assert type in ['normalize', 'none']
if type == 'normalize':
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
elif type == 'none':
transform = transforms.Compose(
[transforms.ToTensor()]
)
return transform
def init_optimizer(self):
assert self.params.baseoptim in ['sgd', 'adam']
if self.params.baseoptim == 'sgd':
self.base_optimizer = torch.optim.SGD
elif self.params.baseoptim == 'adam':
self.base_optimizer = torch.optim.Adam
assert self.params.secoptim in ['sam', 'asam', 'none']
if self.params.secoptim == 'sam': # TODO: hyperparams of optimizer
self.optimizer = SAM(self.model.parameters(),
self.base_optimizer, lr=self.params.lr, weight_decay=self.params.wd, rho=self.params.rho
, momentum=self.params.momentum)
elif self.params.secoptim == 'asam':
self.optimizer = SAM(self.model.parameters(),
self.base_optimizer, lr=self.params.lr, weight_decay=self.params.wd, adaptive=True,
rho=self.params.rho, momentum=self.params.momentum)
elif self.params.secoptim == 'none':
self.optimizer = self.base_optimizer(self.model.parameters(), lr=self.params.lr, weight_decay=self.params.wd,
momentum=self.params.momentum)
if self.params.cosaneal:
print("using cosine scheduler")
if self.params.secoptim == 'none':
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer,
self.params.epochs)
else:
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer.base_optimizer,
self.params.epochs)
else:
self.scheduler = None
def train(self):
print('Start training session of: ', self.params.comment)
# loop over the dataset multiple times
for epoch in tqdm(range(self.params.epochs)):
running_loss = 0.0
epoch_loss = 0.0
self.model.train()
for i, data in tqdm(enumerate(self.trainloader, 0), leave=True):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
inputs, labels = inputs.to(self.device), labels.to(self.device)
if self.params.secoptim != 'none':
outputs = self.model(inputs)
# use this loss for any training statistics
loss = self.criterion(outputs, labels)
loss.backward()
self.optimizer.first_step(zero_grad=True)
# second forward-backward pass
outputs = self.model(inputs)
# make sure to do a full forward pass
self.criterion(outputs, labels).backward()
self.optimizer.second_step(zero_grad=True)
else:
# zero the parameter gradients
self.optimizer.zero_grad()
# forward + backward + optimize
outputs = self.model(inputs)
loss = self.criterion(outputs, labels)
loss.backward()
self.optimizer.step()
# print statistics
running_loss += loss.item()
epoch_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print(
f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
running_loss = 0.0
if self.params.cosaneal:
self.scheduler.step()
print('Start testing...')
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
self.model.eval()
with torch.no_grad():
for data in self.testloader:
images, labels = data
images, labels = images.to(self.device), labels.to(self.device)
# calculate outputs by running images through the network
outputs = self.model(images)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')
if logged:
self.writer.add_scalar(
'Training loss', epoch_loss/len(self.trainloader), epoch)
self.writer.add_scalar(
'Testing Accuracy', correct / total , epoch)
self.save()
print('Finished Training')
def test(self):
# prepare to count predictions for each class
correct_pred = {classname: 0 for classname in self.classes}
total_pred = {classname: 0 for classname in self.classes}
self.model.eval()
# again no gradients needed
with torch.no_grad():
for data in self.testloader:
images, labels = data
images, labels = images.to(self.device), labels.to(self.device)
outputs = self.model(images)
_, predictions = torch.max(outputs, 1)
# collect the correct predictions for each class
for label, prediction in zip(labels, predictions):
if label == prediction:
correct_pred[self.classes[label]] += 1
total_pred[self.classes[label]] += 1
# print accuracy for each class
for classname, correct_count in correct_pred.items():
accuracy = 100 * float(correct_count) / total_pred[classname]
print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')
def save(self):
scheduler_state_dict = self.scheduler.state_dict() if self.params.cosaneal else None
torch.save({
'config': self.params,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'scheduler_state_dict': scheduler_state_dict},
f"{os.getcwd()}/runs/{self.params.comment}.pt"
)
if __name__ == '__main__':
model = OptMLProj()
model.train()
model.test()