forked from Qiskit/qiskit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathh.py
258 lines (206 loc) · 7.77 KB
/
h.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Hadamard gate."""
from __future__ import annotations
from math import sqrt, pi
from typing import Optional, Union
import numpy
from qiskit.circuit.singleton import SingletonGate, SingletonControlledGate, stdlib_singleton_key
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.circuit._utils import with_gate_array, with_controlled_gate_array
from qiskit._accelerate.circuit import StandardGate
_H_ARRAY = 1 / sqrt(2) * numpy.array([[1, 1], [1, -1]], dtype=numpy.complex128)
@with_gate_array(_H_ARRAY)
class HGate(SingletonGate):
r"""Single-qubit Hadamard gate.
This gate is a \pi rotation about the X+Z axis, and has the effect of
changing computation basis from :math:`|0\rangle,|1\rangle` to
:math:`|+\rangle,|-\rangle` and vice-versa.
Can be applied to a :class:`~qiskit.circuit.QuantumCircuit`
with the :meth:`~qiskit.circuit.QuantumCircuit.h` method.
**Circuit symbol:**
.. code-block:: text
┌───┐
q_0: ┤ H ├
└───┘
**Matrix Representation:**
.. math::
H = \frac{1}{\sqrt{2}}
\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}
"""
_standard_gate = StandardGate.HGate
def __init__(self, label: Optional[str] = None, *, duration=None, unit="dt"):
"""Create new H gate."""
super().__init__("h", 1, [], label=label, duration=duration, unit=unit)
_singleton_lookup_key = stdlib_singleton_key()
def _define(self):
"""
gate h a { u2(0,pi) a; }
"""
# pylint: disable=cyclic-import
from qiskit.circuit.quantumcircuit import QuantumCircuit
from .u2 import U2Gate
q = QuantumRegister(1, "q")
qc = QuantumCircuit(q, name=self.name)
rules = [(U2Gate(0, pi), [q[0]], [])]
for instr, qargs, cargs in rules:
qc._append(instr, qargs, cargs)
self.definition = qc
def control(
self,
num_ctrl_qubits: int = 1,
label: str | None = None,
ctrl_state: int | str | None = None,
annotated: bool | None = None,
):
"""Return a (multi-)controlled-H gate.
One control qubit returns a CH gate.
Args:
num_ctrl_qubits: number of control qubits.
label: An optional label for the gate [Default: ``None``]
ctrl_state: control state expressed as integer,
string (e.g.``'110'``), or ``None``. If ``None``, use all 1s.
annotated: indicates whether the controlled gate should be implemented
as an annotated gate. If ``None``, this is handled as ``False``.
Returns:
ControlledGate: controlled version of this gate.
"""
if not annotated and num_ctrl_qubits == 1:
gate = CHGate(label=label, ctrl_state=ctrl_state, _base_label=self.label)
else:
gate = super().control(
num_ctrl_qubits=num_ctrl_qubits,
label=label,
ctrl_state=ctrl_state,
annotated=annotated,
)
return gate
def inverse(self, annotated: bool = False):
r"""Return inverted H gate (itself).
Args:
annotated: when set to ``True``, this is typically used to return an
:class:`.AnnotatedOperation` with an inverse modifier set instead of a concrete
:class:`.Gate`. However, for this class this argument is ignored as this gate
is self-inverse.
Returns:
HGate: inverse gate (self-inverse).
"""
return HGate() # self-inverse
def __eq__(self, other):
return isinstance(other, HGate)
@with_controlled_gate_array(_H_ARRAY, num_ctrl_qubits=1)
class CHGate(SingletonControlledGate):
r"""Controlled-Hadamard gate.
Applies a Hadamard on the target qubit if the control is
in the :math:`|1\rangle` state.
Can be applied to a :class:`~qiskit.circuit.QuantumCircuit`
with the :meth:`~qiskit.circuit.QuantumCircuit.ch` method.
**Circuit symbol:**
.. code-block:: text
q_0: ──■──
┌─┴─┐
q_1: ┤ H ├
└───┘
**Matrix Representation:**
.. math::
CH\ q_0, q_1 =
I \otimes |0\rangle\langle 0| + H \otimes |1\rangle\langle 1| =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 0 & 1 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}
\end{pmatrix}
.. note::
In Qiskit's convention, higher qubit indices are more significant
(little endian convention). In many textbooks, controlled gates are
presented with the assumption of more significant qubits as control,
which in our case would be q_1. Thus a textbook matrix for this
gate will be:
.. code-block:: text
┌───┐
q_0: ┤ H ├
└─┬─┘
q_1: ──■──
.. math::
CH\ q_1, q_0 =
|0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes H =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{pmatrix}
"""
_standard_gate = StandardGate.CHGate
def __init__(
self,
label: Optional[str] = None,
ctrl_state: Optional[Union[int, str]] = None,
*,
duration=None,
unit="dt",
_base_label=None,
):
"""Create new CH gate."""
super().__init__(
"ch",
2,
[],
num_ctrl_qubits=1,
label=label,
ctrl_state=ctrl_state,
base_gate=HGate(label=_base_label),
duration=duration,
unit=unit,
_base_label=_base_label,
)
_singleton_lookup_key = stdlib_singleton_key(num_ctrl_qubits=1)
def _define(self):
"""
gate ch a,b {
s b;
h b;
t b;
cx a, b;
tdg b;
h b;
sdg b;
}
"""
# pylint: disable=cyclic-import
from qiskit.circuit.quantumcircuit import QuantumCircuit
from .x import CXGate # pylint: disable=cyclic-import
from .t import TGate, TdgGate
from .s import SGate, SdgGate
q = QuantumRegister(2, "q")
qc = QuantumCircuit(q, name=self.name)
rules = [
(SGate(), [q[1]], []),
(HGate(), [q[1]], []),
(TGate(), [q[1]], []),
(CXGate(), [q[0], q[1]], []),
(TdgGate(), [q[1]], []),
(HGate(), [q[1]], []),
(SdgGate(), [q[1]], []),
]
for instr, qargs, cargs in rules:
qc._append(instr, qargs, cargs)
self.definition = qc
def inverse(self, annotated: bool = False):
"""Return inverted CH gate (itself)."""
return CHGate(ctrl_state=self.ctrl_state) # self-inverse
def __eq__(self, other):
return isinstance(other, CHGate) and self.ctrl_state == other.ctrl_state