-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdicom_utils.py
151 lines (116 loc) · 5.24 KB
/
dicom_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""
utilities to read (unstructured) directories with dicom data and read dicom images into Dicom_Series Class
Mar 2022
Andreas Wetscherek
Erik van der Bijl
"""
import pydicom as pydicom
import numpy as np
from operator import itemgetter
import os
import pandas as pd
from multiprocessing import Pool
from functools import partial
def thru_plane_position(dcm):
"""Gets spatial coordinate of image origin whose axis
is perpendicular to image plane.
"""
try:
orientation = tuple((float(o) for o in dcm.ImageOrientationPatient))
position = tuple((float(p) for p in dcm.ImagePositionPatient))
rowvec, colvec = orientation[:3], orientation[3:]
normal_vector = np.cross(rowvec, colvec)
slice_pos = np.dot(position, normal_vector)
except:
print('Error: ',dcm.ImageType)
return slice_pos
class Dicom_Series():
""""
Class that loads dicomseries as a whole.
:method: load_data(dcm_filenames) loads all dicom files in the list
"""
def __init__(self,dcm_filenames):
self.load_data(dcm_filenames)
def _get_cube_orientation(self, image_orientation):
u_ori, v_ori = np.split(np.array(image_orientation, dtype=float), 2)
plane_normal = np.cross(u_ori, v_ori)
return np.array([plane_normal, u_ori, v_ori])
def load_data(self,dcm_filenames):
# ensure that AcquisitionDate/Time is also set in this function:
dcm_slices = []
for fn in dcm_filenames:
dcm_temp = pydicom.read_file(fn)
# fix to avoid problems with missing acquisitionDates
dcm_temp.AcquisitionDate = dcm_temp.ContentDate
dcm_temp.AcquisitionTime = dcm_temp.ContentTime
# append to list
dcm_slices += [dcm_temp]
#check single series
series_in_list = set([dcm.SeriesNumber for dcm in dcm_slices])
if len(series_in_list)>1:
print('Multiple series in dataset',series_in_list)
#load data
self.header = dcm_slices[0]
self.slices = dcm_slices
# Extract position for each slice to sort and calculate slice spacing
dcm_slices = [(dcm, thru_plane_position(dcm)) for dcm in dcm_slices]
dcm_slices = sorted(dcm_slices, key=itemgetter(1))
spacings = np.diff([dcm_slice[1] for dcm_slice in dcm_slices])
slice_spacing = np.mean(spacings)
# All slices will have the same in-plane shape
shape = (int(dcm_slices[0][0].Columns), int(dcm_slices[0][0].Rows))
self.nslices = len(dcm_slices)
# Final 3D array will be N_Slices x Columns x Rows
self.shape = (self.nslices, shape[1],shape[0])
self.voxel_data = np.empty(self.shape, dtype='float32')
slope = 1
intercept = 0
for idx, (dcm, _) in enumerate(dcm_slices):
# Rescale and shift in order to get accurate pixel values
try:
slope = float(dcm.RealWorldValueMappingSequence[0].RealWorldValueSlope)
intercept = float(dcm.RealWorldValueMappingSequence[0].RealWorldValueIntercept)
except:
slope = float(dcm.RescaleSlope)
intercept = float(dcm.RescaleIntercept)
self.voxel_data[idx,:,:] = dcm.pixel_array.astype('float32') * slope + intercept
self.slope = slope
self.intercept = intercept
# Calculate size of a voxel in mm
pixel_spacing = tuple(float(spac) for spac in dcm_slices[0][0].PixelSpacing)
self.voxel_spacing = (slice_spacing, *pixel_spacing)
self.origin = np.array(dcm_slices[0][0].ImagePositionPatient).astype('float32')
self.axs = self._get_cube_orientation(self.header.ImageOrientationPatient)
def get_dcm_info(fn,extra_tags = ['EchoTime']):
# AW: replaced AcquisitionDate/Time with ContentDateTime
tags = ['SeriesDescription','SeriesInstanceUID','StudyInstanceUID','ContentDate','ContentTime','InstitutionName','InstanceNumber','TemporalPositionIdentifier','ImageType','SeriesNumber']
if len(extra_tags)>0:
tags.extend(extra_tags)
result = {}
print(tags)
try:
dcm = pydicom.read_file(fn,force=True,specific_tags=tags)
result ={tag:dcm[tag].value for tag in tags}
# AW: make sure AcquisitionDate/Time is always set:
result.update({'AcquisitionDate': dcm['ContentDate'].value, 'AcquisitionTime': dcm['ContentTime'].value})
result.update({'fn':fn})
except:
pass
result.update({'fn':fn})
return result
def index_dicom_files(root_directory,extra_tags=[]):
fn_list = []
for root, dirs, files in os.walk(root_directory,topdown=False):
if files:
fn_list.extend([os.path.join(root,fn) for fn in files])
p = Pool(4)
df = pd.DataFrame(p.map(partial(get_dcm_info, extra_tags=extra_tags),fn_list))
try:
df['ImageType']=df['ImageType'].astype('str')
except:
pass
# drop duplicates if same dicom is saved on multiple locations
df.drop_duplicates(subset=df.columns.difference(['fn']),inplace=True,ignore_index=True)
# Sort dataframe
df.sort_values(by = ['AcquisitionDate','SeriesInstanceUID','TemporalPositionIdentifier','InstanceNumber'],inplace=True)
return df