Skip to content

Latest commit

 

History

History
309 lines (247 loc) · 7.38 KB

File metadata and controls

309 lines (247 loc) · 7.38 KB

第十章 信源编码

P328

10-2

对基带信号,进行理想抽样,为了在接收端能无失真地从抽样信号 $m(t) = \cos 2000\pi t + 2\cos 4000\pi t$ 中恢复 $m(t)$

(1)抽样间隔应如何选择?

$$ \begin{aligned} f_\mathrm{m} = & 2000Hz\\ B = & 2000 - 1000 = 1000Hz\\ n = & \left\lfloor\frac{f_\mathrm{m}}{B}\right\rfloor = 2\\ k = & \left{\frac{f_\mathrm{m}}{B}\right} = 0\\ f_\mathrm{s} = & 2B\left(1 + \frac{k}{n}\right) = 2000Hz\\ t_\mathrm{s} = & \frac{1}{f_\mathrm{s}} = 5 \times 10^{-4}s \end{aligned} $$

(2)若抽样间隔为0.2ms,试画出已抽样信号的频谱图。

$$ \begin{aligned} f_\mathrm{s} = & \frac{1}{t_\mathrm{s}} = 5000Hz\\ \Omega_\mathrm{s} = & 2\pi f_\mathrm{s} = 10^4\pi rad/s\\ H(\jmath\Omega) = & \pi\delta(\Omega - 2000\pi) + 2\pi\delta(\Omega - 4000\pi)\\ & + \pi\delta(\Omega + 2000\pi) + 2\pi\delta(\Omega + 4000\pi)\\ H_\mathrm{s}(\jmath\Omega) = & f_\mathrm{s}H(\jmath\Omega) * \delta_\mathrm{\Omega_\mathrm{s}}(\Omega) \end{aligned} $$

频谱图

程序清单

10-7

设信号 $m(t) = 9 + A\cos\omega t$ ,其中 $A \leqslant 10V$ 。若 $m(t)$ 被均匀 量化为40个电平,试确定所需的二进制码组的位数 $N$ 和量化间隔 $\Delta v$

$$ \begin{aligned} \Delta v = & \frac{\max\limits_t m(t) - \min\limits_t m(t)}{M} = 0.5V\\ N = & \left\lceil\mathrm{lb}M\right\rceil = 6 \end{aligned} $$

10-8

已知模拟信号抽样值的概率密度 $f(x)$ 如图P10-3所示。若按4电平进行均匀量化,试 计算信号量化噪声功率比。

图P10-3

$$ \begin{aligned} \Delta v = & \frac{\max x - \min x}{M} = 0.5V\\ q \sim & U(-\frac{\Delta v}{2}, \frac{\Delta v}{2})\\ Eq^2 = & \frac{(\Delta v)^2}{12} = \frac{1}{48}W\\ Ex^2 = & \int\nolimits_{-1}^1 x^2(1 - |x|)dx\\ = & 2\int\nolimits_{-1}^1 (x^2 - x^3)dx\\ = & \frac{1}{6}W\\ r_q = & \frac{Ex^2}{Eq^2} = 8 \end{aligned} $$

10-10

设输入信号抽样脉冲值为 $+635\Delta$$\Delta$ 表示一个最小量化单位),采用 13折线A律 PCM编码。试确定:

(1)此时编码器输出码组、编码电平和量化误差;

$$ \begin{aligned} 635 = & 2^{4 + 5} + \frac{512}{16} \times 3 + 27\\ I_\mathrm{s} = & 11100011_2\\ i_\mathrm{c} = & 635 - 27 = 608\Delta\\ q_\mathrm{c} = & 27\Delta \end{aligned} $$

(2)对应于该7位码(不含极性码)的均匀量化11位码;

$$ I_\mathrm{c} = 01001100000_2 $$

dec2bin(608)

(3)译码电平和译码后的量化误差。

$$ \begin{aligned} 635 = & 2^{4 + 5} + \frac{512}{32} \times 7 + 11\\ i_\mathrm{d} = & 635 - 11 = 624\Delta\\ I_\mathrm{d} = & 010011100000_2\\ q_\mathrm{d} = & 11\Delta \end{aligned} $$

dec2bin(624)

10-11

采用13折线A律PCM编译码电路,设接收端译码器收到的码组为“01010011”,最小量化间 隔为1个量化单位( $\Delta$ )。试求:

(1)译码器输出(按量化单位 $\Delta$ 计算);

$$ \begin{aligned} i_\mathrm{c} = & -\bigl(2^{4 + 4} + \frac{256}{16} \times (3 + \frac{1}{2})\bigr)\\ = & -312\Delta \end{aligned} $$

(2)对应的12位(不含极性码)线性码(均匀量化)。

$$ \begin{aligned} I_\mathrm{c} = & 00100110000_2\\ I_\mathrm{d} = & 001001110000_2 \end{aligned} $$

dec2bin(312)

10-14

将一个带宽为4.2MHz的模拟信号,用如图10-17所示的PCM系统进行传输。要求接收机输 出端的量化信噪比至少为40dB。试求:

(1)若 $P_\mathrm{e} = 0$ ,求线性PCM码字所需的二进制编码位数 $N$ 和量化器所 需的量化电平数 $M$

$$ \begin{aligned} r_q = & M^2 = 2^{2N} > & 10^{40/10}\\ N = & 7\\ M = & 2^7 = 128 \end{aligned} $$

(2)系统传输的比特率;

$$ \begin{aligned} R_B = & 2B\\ R_b = & NR_B = 58.8Mb/s \end{aligned} $$

(3)若设 $P_\mathrm{e} = 10^{-4}$ ,求系统输出的信噪比。

图P10-17

$$ \begin{aligned} r_n = & \frac{1}{4P_\mathrm{e}} = \frac{10^4}{4}\\ r_q = & M^2 = 128^2\\ r = & r_\mathrm{n} \parallel r_\mathrm{q}\\ = & 2169 \end{aligned} $$

10-15

对10路带宽均为300~3400Hz的模拟信号进行PCM时分复用传输。设抽样速率为8000Hz, 抽样后进行8级量化,并编码为自然二进制码。试求:

(1)传输此复用信号的信息传输速率;

$$ \begin{aligned} R_{B1} = & f_\mathrm{s} = 8000B/s\\ H = & \mathrm{lb}M = 3b/B\\ R_{b1} = & HR_{B1} = 24000b/s\\ R_b = & 10R_{b1} = 240kb/s \end{aligned} $$

(2)若传输码元波形是宽度为 $\tau$ 的矩形脉冲,且占空比为1,求所需的传输带宽 (第一谱零点带宽)和奈奎斯特基带带宽;

$$ \begin{aligned} T_b = & \frac{1}{R_b}\\ \tau = & \eta T_b\\ B = & \frac{1}{\tau} = 240kb/s\\ f_\mathrm{N} = & \frac{B}{2} = 120kb/s \end{aligned} $$

(3)若矩形脉冲的占空比为 $\frac{1}{2}$ ,重做(2)。

$$ \begin{aligned} B = & \frac{R_b}{\eta} = 480kb/s\\ f_\mathrm{N} = & \frac{B}{2} = 240kb/s \end{aligned} $$

10-18

已知模拟信号 $f(t) = 10\sin 4000\pi t + \sin 8000\pi t$ (V),对其进行A律13 折线PCM编码。设以奈奎斯特速率进行抽样,一个输入抽样脉冲幅度为0.546875V,最小 量化间隔为1个量化单位( $\Delta$ )。试求:

(1)此时编码器的输出码组和量化误差;

$$ \begin{aligned} \theta(t) = & 4000\pi t\\ f(t) = & 2(5 + \cos\theta(t))\sin\theta(t)\\ x(t) = & \cos\theta(t) \in [-1, 1]\\ f(t) = & 2\sqrt{25 + 10x(t) - 24x(t)^2 - 10x(t)^3 - x(t)^4}\\ g(x) = & \left(\frac{f(t(x))}{2}\right)^2\\ = & 25 + 10x - 24x^2 - 10x^3 - x^4\\ \frac{d}{dx}g(x) = & 10 - 48x - 30x^2 - 4x^3\\ & = -4(x + 5)(x - \frac{\sqrt{33} - 5}{4})(x - \frac{-\sqrt{33} - 5}{4})\\ x_0 & = \frac{\sqrt{33} - 5}{4} \in (-1, 1)\\ \left(\frac{d}{dx}\right)^2g(x_0) & < 0\\ t_0 & = \frac{\arccos \frac{\sqrt{33} - 5}{4}}{4000\pi}\\ \max\limits_t f(t) = & f(t_0)\\ \min\limits_t f(t) = & f(- t_0) = -f(t_0)\\ \Delta = & \frac{\max\limits_t f(t) - \min\limits_t f(t)}{4096} \approx \frac{10.191}{2048}V\\ i_\mathrm{s} = & \left[\frac{i}{\Delta}\right]\Delta = 110\Delta\\ 110 & = 2^{4 + 2} + \frac{64}{16} \times 2 + 14\\ I_\mathrm{s} & = 10110010_2\\ q_\mathrm{s} & = 14\Delta \end{aligned} $$

(2)若采用时分多路系统传输10路编码后的PCM信号,传输波形为非归零的矩形脉冲时 ,试确定该PCM时分多路信号的信息传输速率和传输带宽(第一谱零点带宽)。

$$ \begin{aligned} f_\mathrm{m} = & 4000Hz\\ B = & 2000Hz\\ f_\mathrm{s} = & 2B = 4000Hz\\ R_{B1} = & f_\mathrm{s} = 4000B/s\\ R_{b1} = & HR_{B1} = 32kb/s\\ R_b = & 10R_{b1} = 320kb/s\\ B_0 = & \frac{R_b}{\eta} = 320kb/s \end{aligned} $$

附录

10_2_2

%% input
tic;
clc;
clear;
close all;

%% process
ts = 0.2;
fs = 1 / ts;
ws = 2 * fs;
w1 = 2;
w2 = 4;
W = [w1 w2];
H = [1 2] * fs;
n = 2;
DW = W;
DH = H;
for i = 1:n
	W = [W DW + i * ws];
	H = [H DH];
end
W = [W, - fliplr(W)];
H = [H fliplr(H)];
st = stem(W, H, '^');
hold on;
xlabel('$\Omega/(\pi\mathrm{kHz})$');
ylabel('$H(\jmath\Omega)/(\pi \mathrm{kV}\cdot\mathrm{s})$');
set(gca, 'xtick', W);
set(gca, 'ytick', DH);
for i = - length(W) / 4:length(W) / 4 - 1
	plot([i * ws i * ws], [0 max(H)], ':');
end
print -dpdflatexstandalone '/tmp/10_2_2.tex';
system 'latexmk -cd -pvc- /tmp/10_2_2.tex';
system 'cp /tmp/10_2_2.pdf img/10_2_2.pdf';

%% output
toc;