Skip to content

Commit dec8a9f

Browse files
committed
Added structure Authors (chapter, section) to old inbook references
Changes suggested by vnmabus + Added structure Authors (chapter, section) to old inbook references
1 parent b036651 commit dec8a9f

13 files changed

+45
-64
lines changed

examples/plot_pairwise_alignment.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -35,8 +35,8 @@
3535
# In the case of elastic registration it is taken as energy function the
3636
# Fisher-Rao distance with a penalisation term, due to the property of
3737
# invariance to reparameterizations of warpings functions,
38-
# as detailed in Srivastava and Klassen's chapter, *"Functional Data and
39-
# Elastic Registration"*, pp. 73-123\ :footcite:p:`srivastava+klassen_2016`.
38+
# as detailed in Srivastava and Klassen (chapter 4)\
39+
# :footcite:p:`srivastava+klassen_2016`.
4040
#
4141
# .. math::
4242
# E[f \circ \gamma, g] = d_{FR} (f \circ \gamma, g)

examples/plot_phonemes_classification.py

+1-2
Original file line numberDiff line numberDiff line change
@@ -38,8 +38,7 @@
3838
# We will first load the (binary) Phoneme dataset and plot the first 20
3939
# functions.
4040
# We restrict the data to the first 150 variables, as done in Ferraty and
41-
# Vieu's chapter, *"Computational Issues"*, pp. 99.-108\
42-
# :footcite:ps:`ferraty+vieu_2006`, because most of the
41+
# Vieu (chapter 7)\ :footcite:ps:`ferraty+vieu_2006`, because most of the
4342
# useful information is in the lower frequencies.
4443
X, y = fetch_phoneme(return_X_y=True)
4544

examples/plot_tecator_regression.py

+1-2
Original file line numberDiff line numberDiff line change
@@ -48,8 +48,7 @@
4848

4949
# %%
5050
# For spectrometric data, the relevant information of the curves can often
51-
# be found in the derivatives, as discussed in Ferraty and Vieu's chapter,
52-
# *"Computational Issues"*, pp. 99–108\
51+
# be found in the derivatives, as discussed in Ferraty and Vieu (chapter 7)\
5352
# :footcite:`ferraty+vieu_2006`.
5453
# Thus, we compute numerically the second derivative and plot it.
5554
X_der = X.derivative(order=2)

skfda/datasets/_real_datasets.py

+4-5
Original file line numberDiff line numberDiff line change
@@ -1234,8 +1234,8 @@ def fetch_gait(
12341234

12351235
if fetch_gait.__doc__ is not None: # docstrings can be stripped off
12361236
fetch_gait.__doc__ += _gait_template.format(
1237-
cite="Ramsay and Silverman, *'Introduction'*, pp. 1-18 "
1238-
":footcite:p:`ramsay+silverman_2005`.",
1237+
cite="Ramsay and Silverman (chapter 1) "
1238+
":footcite:p:`ramsay+silverman_2005`",
12391239
bibliography=".. footbibliography::",
12401240
) + _param_descr
12411241

@@ -1345,9 +1345,8 @@ def fetch_handwriting(
13451345

13461346
if fetch_handwriting.__doc__ is not None: # docstrings can be stripped off
13471347
fetch_handwriting.__doc__ += _handwriting_template.format(
1348-
cite="Ramsay and Silverman,"
1349-
"*'From Functional Data to Smooth Functions'*, pp. 37-58"
1350-
":footcite:p:`ramsay+silverman_2005`.",
1348+
cite="Ramsay and Silverman (chapter 3) "
1349+
":footcite:p:`ramsay+silverman_2005`",
13511350
bibliography=".. footbibliography::",
13521351
) + _param_descr
13531352

skfda/exploratory/stats/_fisher_rao.py

+4-5
Original file line numberDiff line numberDiff line change
@@ -73,9 +73,8 @@ def _fisher_rao_warping_mean(
7373
7474
The karcher mean :math:`\bar \gamma` is defined as the warping that
7575
minimises locally the sum of Fisher-Rao squared distances.
76-
See Srivastava and Klassen's chapter, *"Statistical Modeling of Functional
77-
Data"*, pp. 269-303\ :footcite:p:`srivastava+klassen_2016`
78-
for a detailed explanation.
76+
See Srivastava and Klassen (chapter 8)\
77+
:footcite:p:`srivastava+klassen_2016` for a detailed explanation.
7978
8079
.. math::
8180
\bar \gamma = argmin_{\gamma \in \Gamma} \sum_{i=1}^{n}
@@ -213,8 +212,8 @@ def fisher_rao_karcher_mean(
213212
equivalence class which makes the mean of the warpings employed be the
214213
identity.
215214
216-
See Srivastava and Klassen's chapter, *"Statistical Modeling of Functional
217-
Data"*, pp. 269-303\ :footcite:p:`srivastava+klassen_2016` and
215+
See Srivastava and Klassen (chapter 8)\
216+
:footcite:p:`srivastava+klassen_2016` and
218217
:footcite:`srivastava++_2011_registration`.
219218
220219
Args:

skfda/misc/hat_matrix.py

+7-8
Original file line numberDiff line numberDiff line change
@@ -150,14 +150,13 @@ class NadarayaWatsonHatMatrix(HatMatrix):
150150
For smoothing, :math:`\{x_1, ..., x_n\}` are the points with known value
151151
and :math:`\{x_1', ..., x_m'\}` are the points for which it is desired to
152152
estimate the smoothed value. The distance :math:`d` is the absolute value
153-
function, as detailed in Wasserman's chapter *"Nonparametric Regression"*,
154-
pp. 61-123\ :footcite:`wasserman_2006`.
153+
function, as detailed in Wasserman (chapter 5)\
154+
:footcite:`wasserman_2006`.
155155
156156
For regression, :math:`\{x_1, ..., x_n\}` is the functional data and
157157
:math:`\{x_1', ..., x_m'\}` are the functions for which it is desired to
158158
estimate the scalar value. Here, :math:`d` is some functional distance.
159-
For more information, see Ferraty and Vieu's chapter, *"Functional
160-
Nonparametric Prediction Methodologies"*, pp. 49-59\
159+
For more information, see Ferraty and Vieu (chapter 5)\
161160
:footcite:`ferraty+vieu_2006`.
162161
163162
In both cases :math:`K(\cdot)` is a kernel function and :math:`h` is the
@@ -228,8 +227,8 @@ class LocalLinearRegressionHatMatrix(HatMatrix):
228227
where :math:`\{t_1, t_2, ..., t_n\}` are points with known value and
229228
:math:`\{t_1', t_2', ..., t_m'\}` are the points for which it is
230229
desired to estimate the smoothed value.
231-
For a more detailed explanation, see Wasserman's chapter *"Nonparametric
232-
Regression"*, pp. 61-123\ :footcite:`wasserman_2006`.
230+
For a more detailed explanation, see Wasserman (chapter 5)\
231+
:footcite:`wasserman_2006`.
233232
234233
For **kernel regression** algorithm:
235234
@@ -451,8 +450,8 @@ class KNeighborsHatMatrix(HatMatrix):
451450
In both cases, :math:`K(\cdot)` is a kernel function and
452451
:math:`h_{i}` is calculated as the distance from :math:`x_i'` to its
453452
``n_neighbors``-th nearest neighbor in :math:`\{x_1, ..., x_n\}`, as
454-
detailed in Ferraty and Vieu's chapter, *"Computational Issues"*,
455-
pp. 99.-108\ :footcite:ps:`ferraty+vieu_2006`.
453+
detailed in Ferraty and Vieu (chapter 7)\
454+
:footcite:ps:`ferraty+vieu_2006`.
456455
457456
Used with the uniform kernel, it takes the average of the closest
458457
``n_neighbors`` points to a given point.

skfda/misc/metrics/_fisher_rao.py

+6-9
Original file line numberDiff line numberDiff line change
@@ -166,9 +166,8 @@ def fisher_rao_amplitude_distance(
166166
.. math::
167167
\mathcal{R}(\gamma) = \|\sqrt{\gamma'}- 1 \|_{\mathbb{L}^2}^2
168168
169-
See Srivastava and Klassen's chapter, *"Functional Data and Elastic
170-
Registration"*, pp. 73-123\ :footcite:p:`srivastava+klassen_2016`
171-
for a detailed explanation.
169+
See Srivastava and Klassen (chapter 4)\
170+
:footcite:p:`srivastava+klassen_2016` for a detailed explanation.
172171
173172
If the observations are defined in a :term:`domain` different than (0,1)
174173
their domains are normalized to this interval with an affine
@@ -265,9 +264,8 @@ def fisher_rao_phase_distance(
265264
266265
where :math:`\gamma_{id}` is the identity warping.
267266
268-
See Srivastava and Klassen's chapter, *"Functional Data and Elastic
269-
Registration"*, pp. 73-123\ :footcite:p:`srivastava+klassen_2016`
270-
for a detailed explanation.
267+
See Srivastava and Klassen (chapter 4)\
268+
:footcite:p:`srivastava+klassen_2016` for a detailed explanation.
271269
272270
If the observations are defined in a :term:`domain` different than (0,1)
273271
their domains are normalized to this interval with an affine
@@ -350,9 +348,8 @@ def _fisher_rao_warping_distance(
350348
d_{\Gamma}(\gamma_i, \gamma_j) = cos^{-1} \left ( \int_0^1
351349
\sqrt{\gamma_i'(t)\gamma_j'(t)}dt \right )
352350
353-
See Srivastava and Klassen's chapter, *"Functional Data and Elastic
354-
Registration"*, pp. 73-123\ :footcite:p:`srivastava+klassen_2016`
355-
for a detailed explanation.
351+
See Srivastava and Klassen (chapter 4)\
352+
:footcite:p:`srivastava+klassen_2016` for a detailed explanation.
356353
357354
If the warpings are not defined in [0,1], an affine transformation is made
358355
to change the :term:`domain`.

skfda/misc/operators/_srvf.py

+5-6
Original file line numberDiff line numberDiff line change
@@ -29,8 +29,8 @@ class SRSF(
2929
This representation is used to compute the extended non-parametric
3030
Fisher-Rao distance between functions, wich under the SRSF representation
3131
becomes the usual :math:`\mathbb{L}^2` distance between functions.
32-
See Srivastava and Klassen's chapter, *"Functional Data and Elastic
33-
Registration"*, pp. 73-123\ :footcite:p:`srivastava+klassen_2016`.
32+
See Srivastava and Klassen (chapter 4)\
33+
:footcite:p:`srivastava+klassen_2016`.
3434
3535
The inverse SRSF transform is defined as
3636
@@ -134,8 +134,8 @@ def transform(self, X: FDataGrid, y: object = None) -> FDataGrid:
134134
135135
Let :math:`f : [a,b] \rightarrow \mathbb{R}` be an absolutely
136136
continuous function, the SRSF transform is defined as in
137-
Srivastava and Klassen's chapter, *"Functional Data and Elastic
138-
Registration"*, pp. 73-123\ :footcite:p:`srivastava+klassen_2016`
137+
Srivastava and Klassen (chapter 4)\
138+
:footcite:p:`srivastava+klassen_2016`
139139
140140
.. math::
141141
@@ -186,8 +186,7 @@ def inverse_transform(self, X: FDataGrid, y: None = None) -> FDataGrid:
186186
Compute the inverse SRSF transform.
187187
188188
Given the srsf and the initial value the original function can be
189-
obtained as detailed in Srivastava and Klassen's chapter, *"Functional
190-
Data and Elastic Registration"*, pp. 73-123\
189+
obtained as detailed in Srivastava and Klassen (chapter 4)\
191190
:footcite:p:`srivastava+klassen_2016`:
192191
193192
.. math::

skfda/preprocessing/dim_reduction/_fpca.py

+2-3
Original file line numberDiff line numberDiff line change
@@ -32,9 +32,8 @@ class FPCA( # noqa: WPS230 (too many public attributes)
3232
when fitting a FDataBasis or FDataGrid, except for ``components_basis``.
3333
3434
For more information about the implementation of the computation of the
35-
first principal components see Ramsay and Silverman's chapter,
36-
*"Basis function expansion of the functions"*, pp. 161-164\
37-
:footcite:`ramsay+silverman_2005`.
35+
first principal components see Ramsay and Silverman (chapter 8, section
36+
4)\ :footcite:`ramsay+silverman_2005`.
3837
3938
Parameters:
4039
n_components: Number of principal components to keep from

skfda/preprocessing/registration/_fisher_rao.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -61,8 +61,8 @@ class FisherRaoElasticRegistration(
6161
distances. See :func:`~elastic_mean`.
6262
6363
The algorithms employed and the SRSF framework are described extensively
64-
in Srivastava and Klassen's chapter, *"Functional Data and Elastic
65-
Registration"*, pp. 73-123\ :footcite:p:`srivastava+klassen_2016`.
64+
in Srivastava and Klassen (chapter 4)\
65+
:footcite:p:`srivastava+klassen_2016`.
6666
6767
Args:
6868
template: Template to

skfda/preprocessing/registration/_landmark_registration.py

+2-4
Original file line numberDiff line numberDiff line change
@@ -203,8 +203,7 @@ def landmark_elastic_registration_warping(
203203
:math:`h_i(t^*_j)=t_{ij}`.
204204
The registered samples can be obtained as :math:`x^*_i(t)=x_i(h_i(t))`.
205205
206-
See Ramsay and Silverman's chapter, *"The Registration and Display of
207-
Functional Data"*, pp. 127-145\ :footcite:`ramsay+silverman_2005`
206+
See Ramsay and Silverman (chapter 7)\ :footcite:`ramsay+silverman_2005`
208207
for a detailed explanation.
209208
210209
Args:
@@ -345,8 +344,7 @@ def landmark_elastic_registration(
345344
The registered samples will have their features aligned, i.e.,
346345
:math:`x^*_i(t^*_j)=x_i(t_{ij})`.
347346
348-
See Ramsay and Silverman's chapter, *"The Registration and Display of
349-
Functional Data"*, pp. 127-145\ :footcite:`ramsay+silverman_2005`
347+
See Ramsay and Silverman (chapter7)\ :footcite:`ramsay+silverman_2005`
350348
for a detailed explanation.
351349
352350
Args:

skfda/preprocessing/registration/_lstsq_shift_registration.py

+7-12
Original file line numberDiff line numberDiff line change
@@ -28,8 +28,7 @@ class LeastSquaresShiftRegistration(
2828
r"""Register data using shift alignment by least squares criterion.
2929
3030
Realizes the registration of a set of curves using a shift aligment,
31-
as detailed in Ramsay and Silverman's chapter, *"The Registration
32-
and Display of Functional Data"*, pp. 127-145\
31+
as detailed in Ramsay and Silverman (chapter 7)\
3332
:footcite:`ramsay+silverman_2005`.
3433
Let :math:`\{x_i(t)\}_{i=1}^{N}` be a functional dataset, calculates
3534
:math:`\delta_{i}` for each sample such that :math:`x_i(t + \delta_{i})`
@@ -42,8 +41,7 @@ class LeastSquaresShiftRegistration(
4241
Estimates each shift parameter :math:`\delta_i` iteratively by
4342
using a modified Newton-Raphson algorithm, updating the template
4443
:math:`\mu` in each iteration as is described in detail in
45-
Ramsay and Silverman's chapter, *"The Registration and Display
46-
of Functional Data"*, pp. 127-145\ :footcite:`ramsay+silverman_2005`.
44+
Ramsay and Silverman (chapter 7)\ :footcite:`ramsay+silverman_2005`.
4745
4846
Method only implemented for univariate functional data.
4947
@@ -64,20 +62,17 @@ class LeastSquaresShiftRegistration(
6462
template to the registration, if it is a callable or "mean" the
6563
template is computed iteratively constructing a temporal template
6664
in each iteration.
67-
In Ramsay and Silverman's chapter, *"The Registration
68-
and Display of Functional Data"*, pp. 127-145\
69-
:footcite:`ramsay+silverman_2005`
70-
this procedure is described in detail. Defaults to "mean".
65+
In Ramsay and Silverman (chapter 7)\
66+
:footcite:`ramsay+silverman_2005` this procedure is described in
67+
detail. Defaults to "mean".
7168
extrapolation: Controls the
7269
extrapolation mode for points outside the :term:`domain` range.
7370
By default uses the method defined in the data to be transformed.
7471
See the `extrapolation` documentation to obtain more information.
7572
step_size: Parameter to adjust the rate of
7673
convergence in the Newton-Raphson algorithm, see
77-
Ramsay and Silverman's chapter, *"The Registration
78-
and Display of Functional Data"*, pp. 127-145\
79-
:footcite:`ramsay+silverman_2005`.
80-
Defaults to 1.
74+
Ramsay and Silverman (chapter 7)\
75+
:footcite:`ramsay+silverman_2005`. Defaults to 1.
8176
restrict_domain: If True restricts the :term:`domain`
8277
to avoid the need of using extrapolation, in which
8378
case only the fit_transform method will be available, as training

skfda/representation/basis/_bspline_basis.py

+2-4
Original file line numberDiff line numberDiff line change
@@ -31,8 +31,7 @@ class BSplineBasis(Basis):
3131
3232
Implementation details: In order to allow a discontinuous behaviour at
3333
the boundaries of the domain it is necessary to place m knots at the
34-
boundaries, as done in Ramsay and Silverman's chapter, *"From
35-
Functional Data to Smooth Functions"*, pp. 37-58\
34+
boundaries, as done in Ramsay and Silverman (chapter 3)\
3635
:footcite:p:`ramsay+silverman_2005`. This is
3736
automatically done so that the user only has to specify a single knot
3837
at the boundaries.
@@ -389,8 +388,7 @@ class BSpline(BSplineBasis):
389388
390389
Implementation details: In order to allow a discontinuous behaviour at
391390
the boundaries of the domain it is necessary to place m knots at the
392-
boundaries, as done in Ramsay and Silverman's chapter, *"From
393-
Functional Data to Smooth Functions"*, pp. 37-58\
391+
boundaries, as done in Ramsay and Silverman (chapter 3)\
394392
:footcite:p:`ramsay+silverman_2005`. This is
395393
automatically done so that the user only has to specify a single knot
396394
at the boundaries.

0 commit comments

Comments
 (0)