-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_decid.ml
195 lines (162 loc) · 7.19 KB
/
gen_decid.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
(* ========================================================================= *)
(* Helper functions and tools for decisionp procedures. *)
(* *)
(* (c) Copyright, Antonella Bilotta, Marco Maggesi, *)
(* Cosimo Perini Brogi, Leonardo Quartini 2024. *)
(* (c) Copyright, Antonella Bilotta, Marco Maggesi, *)
(* Cosimo Perini Brogi 2025. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Lemmata. *)
(* ------------------------------------------------------------------------- *)
let HOLDS_NNFC_UNFOLD = prove
(`(!V w:W. ~holds (W,R) V False w) /\
(!V w. holds (W,R) V True w) /\
(!V s w. holds (W,R) V (Atom s) w <=> V s w) /\
(!V p w. holds (W,R) V (Not p) w <=> ~holds (W,R) V p w) /\
(!p V q w.
holds (W,R) V (p && q) w <=> holds (W,R) V p w /\ holds (W,R) V q w) /\
(!p V q w.
holds (W,R) V (p || q) w <=> holds (W,R) V p w \/ holds (W,R) V q w) /\
(!p V q w.
holds (W,R) V (p --> q) w <=>
~holds (W,R) V p w \/ holds (W,R) V q w) /\
(!p V q w.
holds (W,R) V (p <-> q) w <=>
(holds (W,R) V p w \/ ~holds (W,R) V q w) /\
(~holds (W,R) V p w \/ holds (W,R) V q w))`,
REWRITE_TAC[holds] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Helper functions. *)
(* ------------------------------------------------------------------------- *)
let dest_box = function
Comb(Const("Box",_),tm) -> tm
| _ -> failwith "dest_box";;
let dest_holds = function
Comb(Comb(Comb(Comb(Const("holds",_),_),_),tm),_) -> tm
| _ -> failwith "dest_holds";;
(* ------------------------------------------------------------------------- *)
(* Sorting clauses. *)
(* ------------------------------------------------------------------------- *)
let holds_rank tm =
try 0,dest_holds(dest_neg tm) with Failure _ ->
try let x = dest_holds tm in
try 1,dest_box x with Failure _ -> 2,x
with Failure _ -> 3,tm;; (* This case should never occur in practice. *)
(* Must be a total order, otherwise we may have loops in the main tactic. *)
let holds_lt tm1 tm2 =
let c1 = compare tm1 tm2 in
if c1 = 0 then false else
let r1,x1 = holds_rank tm1
and r2,x2 = holds_rank tm2 in
if r1 <> r2 then r1 < r2 else
let c2 = compare x1 x2 in
if c2 = 0 then c1 > 0 else
if free_in x1 x2 then true else
if free_in x2 x1 then false else
c2 > 0;;
let SORT_BOX_CONV : conv =
let f = list_mk_disj o uniq o mergesort holds_lt o striplist dest_disj in
fun tm -> DISJ_ACI_RULE (mk_eq(tm,f tm));;
let SORT_BOX_TAC : tactic = CONV_TAC SORT_BOX_CONV;;
(* ------------------------------------------------------------------------- *)
(* Some additional theorem-tactics. *)
(* ------------------------------------------------------------------------- *)
let DISCARD_TAC : thm_tactic =
let truth_tm = concl TRUTH in
fun th ->
let tm = concl th in
if tm = truth_tm then ALL_TAC else
fun (asl,w as g) ->
if exists (fun a -> aconv tm (concl(snd a))) asl then ALL_TAC g
else failwith "DISCARD_TAC: not already present";;
let NEG_RIGHT_TAC (k:thm_tactic) : tactic =
let pth = MESON []
`((~P \/ Q) <=> (P ==> Q)) /\
(~P <=> (P ==> F))` in
GEN_REWRITE_TAC I [pth] THEN DISCH_THEN k;;
let NEG_LEFT_TAC : thm_tactic =
let pth = MESON [] `~P ==> (P \/ Q) ==> Q` in
MATCH_MP_TAC o MATCH_MP pth;;
let NEG_CONTR_TAC : thm_tactic =
let pth = MESON [] `~P ==> P ==> Q` in
fun th -> MATCH_MP_TAC (MATCH_MP pth th) THEN
FIRST_X_ASSUM MATCH_ACCEPT_TAC;;
let HOLDS_NNFC_UNFOLD_CONV : conv =
GEN_REWRITE_CONV TOP_DEPTH_CONV
[HOLDS_NNFC_UNFOLD; OR_CLAUSES; AND_CLAUSES] THENC
NNFC_CONV;;
(* ------------------------------------------------------------------------- *)
(* Non-recursive building block tactics. *)
(* ------------------------------------------------------------------------- *)
let STRIP_HOLDS_TCL:thm_tactical =
let strip_tcl:thm_tactical = FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN] in
let rule = CONV_RULE HOLDS_NNFC_UNFOLD_CONV in
fun ttac -> REPEAT_TCL strip_tcl ttac o rule;;
let ASSUME_HOLDS_LITERAL_TAC:thm_tactic =
let rewr_tac th =
let pth = MESON[]
`(T \/ p <=> T) /\ (p \/ T <=> T) /\
(F \/ p <=> p) /\ (p \/ F <=> p)` in
GEN_REWRITE_TAC DEPTH_CONV [th; pth] in
let lbl_tac th = rewr_tac th THEN
(CONTR_TAC th ORELSE
DISCARD_TAC th ORELSE
LABEL_TAC "holds" th) in
fun th ->
rewr_tac th THEN
FIRST (mapfilter (fun ttac -> ttac th)
[NEG_CONTR_TAC; NEG_LEFT_TAC; lbl_tac]);;
let STEP_BOXL1_TCL : thm_tactical = fun k acc ->
USE_THEN "boxl1" (fun boxl1 ->
try let f = MATCH_MP (MATCH_MP boxl1 acc) in
ASSUM_LIST (MAP_EVERY (STRIP_HOLDS_TCL k) o mapfilter f)
with Failure _ -> ALL_TAC);;
let STEP_BOXL2_TCL : thm_tactical = fun k hth ->
USE_THEN "boxl2" (fun boxl2 ->
try let f = MATCH_MP (MATCH_MP boxl2 hth) in
ASSUM_LIST (MAP_EVERY (STRIP_HOLDS_TCL k) o mapfilter f)
with Failure _ -> ALL_TAC);;
let rec HOLDS_TAC:thm_tactic = fun th ->
ASSUME_HOLDS_LITERAL_TAC th THEN
TRY (STEP_BOXL2_TCL HOLDS_TAC th);;
(* ------------------------------------------------------------------------- *)
(* Dispatch mechanism. *)
(* Define HOLMS_TAC, HOLMS_RULE and HOLMS_BUILD_COUNTERMODEL. *)
(* ------------------------------------------------------------------------- *)
let holms_decid_tactics : (term * tactic) list ref = ref [];;
(*
[`{}:form->bool`,K_TAC;
`T_AX`,T_TAC;
`K4_AX`,K4_TAC;
`GL_AX`,GL_TAC];;
*)
let holms_register_tactic (tm : term) (tac : tactic) : unit =
holms_decid_tactics := (tm,tac) :: !holms_decid_tactics;;
let get_holms_tactic (tm : term) : tactic =
assoc tm !holms_decid_tactics;;
let holms_dispatch_tac : term -> tactic =
let ptm = `[S . H |~ p]` in
let _,[tmS;_;_] = strip_comb ptm in
fun tm ->
let inst = term_match [] ptm tm in
let tm_ax = instantiate inst tmS in
get_holms_tactic tm_ax ;;
(* Example: *)
(* holms_dispatch `[K4_AX . {} |~ Box a --> a]`;; *)
let HOLMS_DISPATCH_TAC : tactic =
fun (asl,w) as gl -> holms_dispatch_tac w gl;;
let HOLMS_TAC : tactic =
REPEAT (GEN_TAC ORELSE CONV_TAC (CHANGED_CONV let_CONV)) THEN
REWRITE_TAC[diam_DEF; dotbox_DEF] THEN HOLMS_DISPATCH_TAC;;
let HOLMS_RULE (tm : term) : thm =
prove(tm,HOLMS_TAC);;
let the_HOLMS_countermodel : term ref = ref `no_countermodel:bool`;;
let HOLMS_BUILD_COUNTERMODEL tm =
try ignore (HOLMS_RULE tm);
failwith "There is no countermodel."
with Failure _ ->
report "Countermodel found:";
let th = REWRITE_CONV [] !the_HOLMS_countermodel in
print_term (rhs (concl th));
report "";;