-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathk_completeness.ml
343 lines (304 loc) · 14.5 KB
/
k_completeness.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
(* ========================================================================= *)
(* Proof of the consistency and modal completeness of K. *)
(* *)
(* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *)
(* (c) Copyright, Antonella Bilotta, Marco Maggesi, *)
(* Cosimo Perini Brogi, Leonardo Quartini 2024. *)
(* (c) Copyright, Antonella Bilotta, Marco Maggesi, *)
(* Cosimo Perini Brogi 2025. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Correspondence Theory. *)
(* ------------------------------------------------------------------------- *)
let FRAME_CHAR_K = prove
(`FRAME:(W->bool)#(W->W->bool)->bool = CHAR {}`,
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM] THEN
REWRITE_TAC[IN_CHAR; IN_FRAME] THEN
ASM_REWRITE_TAC[NOT_IN_EMPTY]);;
let K_FRAME_VALID = prove
(`!H p. [{} . H |~ p] /\
(!q. q IN H ==> FRAME:(W->bool)#(W->W->bool)->bool |= q)
==> FRAME:(W->bool)#(W->W->bool)->bool |= p`,
ASM_MESON_TAC[GEN_CHAR_VALID; FRAME_CHAR_K]);;
g `FINITE_FRAME:(W->bool)#(W->W->bool)->bool = APPR {}`;;
e (REWRITE_TAC[EXTENSION; FORALL_PAIR_THM]);;
e (REPEAT GEN_TAC);;
e EQ_TAC;;
e (INTRO_TAC "In_Finite_Frame");;
e (SUBGOAL_THEN `(p1:W->bool, p2:W->W->bool) IN CHAR {}` MP_TAC);;
e (ASM_MESON_TAC[FINITE_FRAME_SUBSET_FRAME; SUBSET; FRAME_CHAR_K]);;
e (HYP_TAC "In_Finite_Frame" (REWRITE_RULE[IN_FINITE_FRAME]));;
e (ASM_REWRITE_TAC[IN_APPR; IN_FINITE_FRAME; IN_FRAME]);;
e (ASM_MESON_TAC[CHAR_CAR]);;
e (MESON_TAC[IN_APPR]);;
let FINITE_FRAME_APPR_K = top_thm();;
let K_FINITE_FRAME_VALID = prove
(`!p. [{} . {} |~ p] ==> FINITE_FRAME:(W->bool)#(W->W->bool)->bool |= p`,
ASM_MESON_TAC[GEN_APPR_VALID; FINITE_FRAME_APPR_K]);;
(* ------------------------------------------------------------------------- *)
(* Proof of soundness. *)
(* ------------------------------------------------------------------------- *)
g `~ [{} . {} |~ False]`;;
e (REFUTE_THEN (MP_TAC o MATCH_MP (INST_TYPE [`:num`,`:W`] K_FINITE_FRAME_VALID)));;
e (REWRITE_TAC[NOT_IN_EMPTY]);;
e (REWRITE_TAC[valid; holds; holds_in;
FORALL_PAIR_THM; IN_FINITE_FRAME; NOT_FORALL_THM]);;
e (MAP_EVERY EXISTS_TAC [`{0}`; `\x:num y:num. F`]);;
e (REWRITE_TAC[NOT_INSERT_EMPTY; FINITE_SING; IN_SING]);;
e (MESON_TAC[]);;
let K_CONSISTENT = top_thm ();;
(* ------------------------------------------------------------------------- *)
(* K standard frames and models. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Standard Frame. *)
(* ------------------------------------------------------------------------- *)
let K_STANDARD_FRAME_DEF = new_definition
`K_STANDARD_FRAME = GEN_STANDARD_FRAME {}`;;
let IN_K_STANDARD_FRAME = prove
(`(W,R) IN K_STANDARD_FRAME p <=>
W = {w | MAXIMAL_CONSISTENT {} p w /\
(!q. MEM q w ==> q SUBSENTENCE p)} /\
(W,R) IN FINITE_FRAME /\
(!q w. Box q SUBFORMULA p /\ w IN W
==> (MEM (Box q) w <=> !x. R w x ==> MEM q x))`,
REWRITE_TAC[K_STANDARD_FRAME_DEF; IN_GEN_STANDARD_FRAME] THEN
EQ_TAC THEN MESON_TAC[FINITE_FRAME_APPR_K]);;
(* ------------------------------------------------------------------------- *)
(* Standard Model. *)
(* ------------------------------------------------------------------------- *)
let K_STANDARD_MODEL_DEF = new_definition
`K_STANDARD_MODEL = GEN_STANDARD_MODEL {}`;;
let K_STANDARD_MODEL_CAR = prove
(`K_STANDARD_MODEL p (W,R) V <=>
(W,R) IN K_STANDARD_FRAME p /\
(!a w. w IN W ==> (V a w <=> MEM (Atom a) w /\ Atom a SUBFORMULA p))`,
REWRITE_TAC[K_STANDARD_MODEL_DEF; K_STANDARD_FRAME_DEF;
GEN_STANDARD_MODEL_DEF]);;
(* ------------------------------------------------------------------------- *)
(* Truth Lemma. *)
(* ------------------------------------------------------------------------- *)
let K_TRUTH_LEMMA = prove
(`!W R p V q.
~ [{} . {} |~ p] /\
K_STANDARD_MODEL p (W,R) V /\
q SUBFORMULA p
==> !w. w IN W ==> (MEM q w <=> holds (W,R) V q w)`,
REWRITE_TAC[K_STANDARD_MODEL_DEF] THEN MESON_TAC[GEN_TRUTH_LEMMA]);;
(* ------------------------------------------------------------------------- *)
(* Accessibility lemma. *)
(* ------------------------------------------------------------------------- *)
let K_STANDARD_REL_DEF = new_definition
`K_STANDARD_REL p = GEN_STANDARD_REL {} p`;;
let K_STANDARD_REL_CAR = prove
(`K_STANDARD_REL p w x <=>
MAXIMAL_CONSISTENT {} p w /\ (!q. MEM q w ==> q SUBSENTENCE p) /\
MAXIMAL_CONSISTENT {} p x /\ (!q. MEM q x ==> q SUBSENTENCE p) /\
(!B. MEM (Box B) w ==> MEM B x)`,
REWRITE_TAC[K_STANDARD_REL_DEF; GEN_STANDARD_REL]);;
let K_MAXIMAL_CONSISTENT = prove
(`!p. ~ [{} . {} |~ p]
==> ({M | MAXIMAL_CONSISTENT {} p M /\
(!q. MEM q M ==> q SUBSENTENCE p)},
K_STANDARD_REL p) IN FINITE_FRAME`,
INTRO_TAC "!p; p" THEN
MP_TAC (ISPECL [`{}: form ->bool`;
`p:form`] GEN_FINITE_FRAME_MAXIMAL_CONSISTENT) THEN
ASM_REWRITE_TAC[K_STANDARD_REL_DEF]);;
let K_ACCESSIBILITY_LEMMA= prove
(`!p w q. ~ [{} . {} |~ p] /\
MAXIMAL_CONSISTENT {} p w /\
(!q. MEM q w ==> q SUBSENTENCE p) /\
Box q SUBFORMULA p /\
(!x. K_STANDARD_REL p w x ==> MEM q x)
==> MEM (Box q) w`,
INTRO_TAC "!p w q; p maxw subw boxq rrr" THEN REMOVE_THEN "rrr" MP_TAC THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN INTRO_TAC "asd" THEN
REWRITE_TAC[NOT_FORALL_THM] THEN
REWRITE_TAC[MESON[]`~(p ==> q) <=> (p /\ ~q)`] THEN
REWRITE_TAC[K_STANDARD_REL_DEF] THEN
MP_TAC (ISPECL [`{}: form-> bool`;`p:form`;`w:form list`;`q:form`]
GEN_XK_FOR_ACCESSIBILITY_LEMMA) THEN
ANTS_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN
INTRO_TAC "@X. maxX subX subl" THEN
MP_TAC (ISPECL [`{}: form-> bool`;`p:form`;`w:form list`;`q:form`]
GEN_ACCESSIBILITY_LEMMA) THEN
ANTS_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN
INTRO_TAC "gsr_wX notqX" THEN
EXISTS_TAC `X:form list` THEN
ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Modal completeness theorem for K. *)
(* ------------------------------------------------------------------------- *)
g `!p. ~ [{} . {} |~ p]
==> ({M | MAXIMAL_CONSISTENT {} p M /\
(!q. MEM q M ==> q SUBSENTENCE p)},
K_STANDARD_REL p) IN K_STANDARD_FRAME p`;;
e (INTRO_TAC "!p; not_theor_p");;
e (REWRITE_TAC[IN_K_STANDARD_FRAME]);;
e CONJ_TAC;;
e (MATCH_MP_TAC K_MAXIMAL_CONSISTENT);;
e (ASM_REWRITE_TAC[]);;
e (INTRO_TAC "!q w; subform w_in");;
e EQ_TAC;;
e (ASM_MESON_TAC[K_STANDARD_REL_CAR]);;
e (INTRO_TAC "Implies_Mem_q");;
e (HYP_TAC "w_in" (REWRITE_RULE[IN_ELIM_THM]));;
e (MATCH_MP_TAC K_ACCESSIBILITY_LEMMA);;
e (EXISTS_TAC `p:form`);;
e (ASM_REWRITE_TAC[]);;
let KF_IN_STANDARD_K_FRAME = top_thm();;
g `!M p.
~ [{} . {} |~ p] /\
MAXIMAL_CONSISTENT {} p M /\
MEM (Not p) M /\
(!q. MEM q M ==> q SUBSENTENCE p)
==> ~holds ({M | MAXIMAL_CONSISTENT {} p M /\
(!q. MEM q M ==> q SUBSENTENCE p)},
K_STANDARD_REL p)
(\a w. Atom a SUBFORMULA p /\ MEM (Atom a) w)
p M`;;
e (INTRO_TAC "!M p; p_not_theor max_cons mem implies");;
e (MATCH_MP_TAC GEN_COUNTERMODEL);;
e (EXISTS_TAC `{}:form->bool`);;
e (ASM_REWRITE_TAC[GEN_STANDARD_MODEL_DEF]);;
e CONJ_TAC;;
e (ASM_MESON_TAC[KF_IN_STANDARD_K_FRAME; K_STANDARD_FRAME_DEF]);;
e (ASM_MESON_TAC[IN_ELIM_THM]);;
let K_COUNTERMODEL = top_thm();;
g `!p. FINITE_FRAME:(form list->bool)#(form list->form list->bool)->bool |= p
==> [{} . {} |~ p]`;;
e (GEN_TAC THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] );;
e (INTRO_TAC "p_not_theor");;
e (REWRITE_TAC[valid; NOT_FORALL_THM]);;
e (EXISTS_TAC `({M | MAXIMAL_CONSISTENT {} p M /\
(!q. MEM q M ==> q SUBSENTENCE p)},
K_STANDARD_REL p)`);;
e (REWRITE_TAC[NOT_IMP] THEN CONJ_TAC );;
e (MATCH_MP_TAC K_MAXIMAL_CONSISTENT);;
e (ASM_REWRITE_TAC[]);;
e (SUBGOAL_THEN `({M | MAXIMAL_CONSISTENT {} p M /\
(!q. MEM q M ==> q SUBSENTENCE p)},
K_STANDARD_REL p) IN GEN_STANDARD_FRAME {} p`
MP_TAC);;
e (ASM_MESON_TAC[KF_IN_STANDARD_K_FRAME; K_STANDARD_FRAME_DEF]);;
e (ASM_MESON_TAC[GEN_COUNTERMODEL_ALT]);;
let K_COMPLETENESS_THM = top_thm ();;
(* ------------------------------------------------------------------------- *)
(* Modal completeness for K for models on a generic (infinite) domain. *)
(* ------------------------------------------------------------------------- *)
let K_COMPLETENESS_THM_GEN = prove
(`!p. INFINITE (:A) /\ FINITE_FRAME:(A->bool)#(A->A->bool)->bool |= p
==> [{} . {} |~ p]`,
SUBGOAL_THEN
`INFINITE (:A)
==> !p. FINITE_FRAME:(A->bool)#(A->A->bool)->bool |= p
==> FINITE_FRAME:(form list->bool)#(form list->form list->bool)->bool |= p`
(fun th -> MESON_TAC[th; K_COMPLETENESS_THM]) THEN
ASM_MESON_TAC[FINITE_FRAME_APPR_K; GEN_LEMMA_FOR_GEN_COMPLETENESS]);;
(* ------------------------------------------------------------------------- *)
(* Simple decision procedure for K. *)
(* ------------------------------------------------------------------------- *)
let K_TAC : tactic =
MATCH_MP_TAC K_COMPLETENESS_THM THEN
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds;
IN_FINITE_FRAME; GSYM MEMBER_NOT_EMPTY] THEN
MESON_TAC[];;
let K_RULE tm =
prove(tm, REPEAT GEN_TAC THEN K_TAC);;
K_RULE `!p q r. [{} . {} |~ (Not p --> q --> r) <->
((p --> False) --> q --> r)]`;;
K_RULE `!p. [{} . {} |~ (p --> False) --> False <-> p]`;;
K_RULE `!p q. [{} . {} |~ Not (p && q) <-> Not p || Not q]`;;
(* ------------------------------------------------------------------------- *)
(* Countermodel using set of formulae (instead of lists of formulae). *)
(* ------------------------------------------------------------------------- *)
let K_STDWORLDS_RULES,K_STDWORLDS_INDUCT,K_STDWORLDS_CASES =
new_inductive_set
`!M. MAXIMAL_CONSISTENT {} p M /\
(!q. MEM q M ==> q SUBSENTENCE p)
==> set_of_list M IN K_STDWORLDS p`;;
let K_STDREL_RULES,K_STDREL_INDUCT,K_STDREL_CASES = new_inductive_definition
`!w1 w2. K_STANDARD_REL p w1 w2
==> K_STDREL p (set_of_list w1) (set_of_list w2)`;;
let K_STDREL_IMP_K_STDWORLDS = prove
(`!p w1 w2. K_STDREL p w1 w2 ==>
w1 IN K_STDWORLDS p /\
w2 IN K_STDWORLDS p`,
GEN_TAC THEN MATCH_MP_TAC K_STDREL_INDUCT THEN
REWRITE_TAC[K_STANDARD_REL_CAR] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC K_STDWORLDS_RULES THEN ASM_REWRITE_TAC[]);;
g `!p. BISIMIMULATION
({M | MAXIMAL_CONSISTENT {} p M /\ (!q. MEM q M ==> q SUBSENTENCE p)},
K_STANDARD_REL p,
(\a w. Atom a SUBFORMULA p /\ MEM (Atom a) w))
(K_STDWORLDS p,
K_STDREL p,
(\a w. Atom a SUBFORMULA p /\ Atom a IN w))
(\w1 w2.
MAXIMAL_CONSISTENT {} p w1 /\
(!q. MEM q w1 ==> q SUBSENTENCE p) /\
w2 IN K_STDWORLDS p /\
set_of_list w1 = w2)`;;
e (GEN_TAC THEN REWRITE_TAC[BISIMIMULATION] THEN REPEAT GEN_TAC THEN
STRIP_TAC THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL
[GEN_TAC THEN FIRST_X_ASSUM SUBST_VAR_TAC THEN
REWRITE_TAC[IN_SET_OF_LIST];
ALL_TAC] THEN
CONJ_TAC);;
e (INTRO_TAC "![u1]; w1u1" THEN EXISTS_TAC `set_of_list u1:form->bool` THEN
HYP_TAC "w1u1 -> hp" (REWRITE_RULE[K_STANDARD_REL_CAR]) THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[MATCH_MP_TAC K_STDWORLDS_RULES THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
CONJ_TAC THENL
[MATCH_MP_TAC K_STDWORLDS_RULES THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
FIRST_X_ASSUM SUBST_VAR_TAC THEN MATCH_MP_TAC K_STDREL_RULES THEN
ASM_REWRITE_TAC[]);;
e (INTRO_TAC "![u2]; w2u2" THEN EXISTS_TAC `list_of_set u2:form list` THEN
REWRITE_TAC[CONJ_ACI] THEN
HYP_TAC "w2u2 -> @x2 y2. x2 y2 x2y2" (REWRITE_RULE[K_STDREL_CASES]) THEN
REPEAT (FIRST_X_ASSUM SUBST_VAR_TAC) THEN
SIMP_TAC[SET_OF_LIST_OF_SET; FINITE_SET_OF_LIST] THEN
SIMP_TAC[MEM_LIST_OF_SET; FINITE_SET_OF_LIST; IN_SET_OF_LIST] THEN
CONJ_TAC THENL
[HYP_TAC "x2y2 -> hp" (REWRITE_RULE[K_STANDARD_REL_CAR]) THEN
ASM_REWRITE_TAC[];
ALL_TAC] THEN
CONJ_TAC);;
e (ASM_MESON_TAC[K_STDREL_IMP_K_STDWORLDS]);;
e CONJ_TAC;;
e (ASM_REWRITE_TAC[K_STANDARD_REL_DEF]);;
e (MATCH_MP_TAC SET_OF_LIST_EQ_STANDARD_REL THEN
EXISTS_TAC `x2:form list` THEN EXISTS_TAC `y2:form list` THEN
ASM_REWRITE_TAC[] THEN
SIMP_TAC[NOREPETITION_LIST_OF_SET; FINITE_SET_OF_LIST] THEN
SIMP_TAC[EXTENSION; IN_SET_OF_LIST; MEM_LIST_OF_SET; FINITE_SET_OF_LIST] THEN
ASM_MESON_TAC[MAXIMAL_CONSISTENT; K_STANDARD_REL_DEF]);;
e (MATCH_MP_TAC SET_OF_LIST_EQ_MAXIMAL_CONSISTENT THEN
EXISTS_TAC `y2:form list` THEN
SIMP_TAC[NOREPETITION_LIST_OF_SET; FINITE_SET_OF_LIST] THEN
SIMP_TAC[EXTENSION; IN_SET_OF_LIST; MEM_LIST_OF_SET; FINITE_SET_OF_LIST] THEN
ASM_MESON_TAC[K_STANDARD_REL_CAR]);;
let K_BISIMIMULATION_SET_OF_LIST = top_thm();;
let K_COUNTERMODEL_FINITE_SETS = prove
(`!p. ~[{} . {} |~ p] ==> ~holds_in (K_STDWORLDS p, K_STDREL p) p`,
INTRO_TAC "!p; p" THEN
DESTRUCT_TAC "@M. max mem subf"
(MATCH_MP NONEMPTY_MAXIMAL_CONSISTENT (ASSUME `~ [{} . {} |~ p]`)) THEN
REWRITE_TAC[holds_in; NOT_FORALL_THM; NOT_IMP] THEN
ASSUM_LIST (LABEL_TAC "hp" o MATCH_MP K_COUNTERMODEL o
end_itlist CONJ o rev) THEN
EXISTS_TAC `\a w. Atom a SUBFORMULA p /\ Atom a IN w` THEN
EXISTS_TAC `set_of_list M:form->bool` THEN CONJ_TAC THENL
[MATCH_MP_TAC K_STDWORLDS_RULES THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
REMOVE_THEN "hp" MP_TAC THEN
MATCH_MP_TAC (MESON[] `(p <=> q) ==> (~p ==> ~q)`) THEN
MATCH_MP_TAC BISIMIMULATION_HOLDS THEN
EXISTS_TAC `\w1 w2. MAXIMAL_CONSISTENT {} p w1 /\
(!q. MEM q w1 ==> q SUBSENTENCE p) /\
w2 IN K_STDWORLDS p /\
set_of_list w1 = w2` THEN
ASM_REWRITE_TAC[K_BISIMIMULATION_SET_OF_LIST] THEN
MATCH_MP_TAC K_STDWORLDS_RULES THEN ASM_REWRITE_TAC[]);;