-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtests.ml
307 lines (252 loc) · 14.7 KB
/
tests.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
(* ========================================================================= *)
(* Some tests. *)
(* *)
(* (c) Copyright, Antonella Bilotta, Marco Maggesi, *)
(* Cosimo Perini Brogi 2025. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Tests and examples for the modal logic K. *)
(* ------------------------------------------------------------------------- *)
time HOLMS_RULE `[{} . {} |~ Box (a && b) <-> Box a && Box b]`;;
time HOLMS_RULE `[{} . {} |~ Box a || Box b --> Box (a || b)]`;;
time HOLMS_BUILD_COUNTERMODEL `[{} . {} |~ Box a --> a]`;;
time HOLMS_BUILD_COUNTERMODEL `[{} . {} |~ Box (a || b) --> Box a || Box b]`;;
time HOLMS_BUILD_COUNTERMODEL `[{} . {} |~ Box (Box a --> Diam a)]`;;
(* Löb schema. *)
time HOLMS_BUILD_COUNTERMODEL `[{} . {} |~ Box (Box a --> a) --> Box a]`;;
(* ------------------------------------------------------------------------- *)
(* Tests and examples for the modal logic T. *)
(* ------------------------------------------------------------------------- *)
time HOLMS_RULE `[T_AX . {} |~ Box (a && b) <-> Box a && Box b]`;;
time HOLMS_RULE `[T_AX . {} |~ Box a || Box b --> Box (a || b)]`;;
time HOLMS_RULE `[T_AX . {} |~ Box a --> a]`;;
time HOLMS_RULE `[T_AX . {} |~ Box Box a --> Diam a]`;;
time HOLMS_RULE `[T_AX . {} |~ Box (Box a --> Diam a)]`;;
time HOLMS_RULE `[T_AX . {} |~ a --> Diam a]`;;
time HOLMS_RULE `[T_AX . {} |~ Box a --> Diam a]`;;
time HOLMS_BUILD_COUNTERMODEL `[T_AX . {} |~ Diam a --> a]`;;
time HOLMS_BUILD_COUNTERMODEL `[T_AX . {} |~ Box a --> Box Box a]`;;
(* Löb schema. *)
time HOLMS_BUILD_COUNTERMODEL `[T_AX . {} |~ Box (Box a --> a) --> Box a]`;;
(* ------------------------------------------------------------------------- *)
(* Tests and examples for the modal logic K4. *)
(* ------------------------------------------------------------------------- *)
time HOLMS_RULE `[K4_AX . {} |~ Box (a && b) <-> Box a && Box b]`;;
time HOLMS_RULE `[K4_AX . {} |~ Box a || Box b --> Box (a || b)]`;;
time HOLMS_RULE `[K4_AX . {} |~ Box a --> Box Box a]`;;
time HOLMS_RULE `[K4_AX . {} |~ Dotbox (Box a) <-> Box a]`;;
time HOLMS_RULE `[K4_AX . {} |~ Dotbox (Dotbox a) <-> Dotbox a]`;;
time HOLMS_BUILD_COUNTERMODEL `[K4_AX . {} |~ Box a --> a]`;;
(* Löb schema. Diverges! *)
(* HOLMS_BUILD_COUNTERMODEL
`[K4_AX . {} |~ Box (Box a --> a) --> Box a]`;; *)
(* ------------------------------------------------------------------------- *)
(* Tests and examples for the modal logic GL. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Some arithmetical principles investigated via provability in GL *)
(* *)
(* Modal formulas can be realised as sentences (i.e. closed formulas) of *)
(* Peano Arithmetic (PA). The Box is thus interpreted as the predicate of *)
(* formal provability in PA, Bew(x). *)
(* *)
(* Under this interpretation, we will read modal formulas as follows: *)
(* - Box p = p is provable in PA; *)
(* - Not (Box (Not p)) = p is consistent with PA *)
(* - Not (Box p) = p is unprovable in PA *)
(* - Box (Not p) = p is refutable in PA *)
(* - (Box p) || (Box (Not p)) = p is decidable in PA *)
(* - Not (Box p) && Not (Box (Not p)) = p is undecidable in PA *)
(* - Box (p <-> q) = p and q are equivalent over PA *)
(* - Box (False) = PA is inconsistent *)
(* - Not (Box False) = Diam True = PA is consistent *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Löb schema. *)
(* ------------------------------------------------------------------------- *)
time HOLMS_RULE `!a. [GL_AX . {} |~ Box (Box a --> a) --> Box a]`;;
(* ------------------------------------------------------------------------- *)
(* Formalised Second Incompleteness Theorem: *)
(* In PA, the following is provable: If PA is consistent, it cannot prove *)
(* its own consistency *)
(* ------------------------------------------------------------------------- *)
time HOLMS_RULE
`[GL_AX . {} |~ Not (Box False) --> Not (Box (Diam True))]`;;
(* ------------------------------------------------------------------------- *)
(* PA ignores unprovability statements. *)
(* ------------------------------------------------------------------------- *)
time HOLMS_RULE
`!p. [GL_AX . {} |~ Box False <-> Box Diam p]`;;
(* ------------------------------------------------------------------------- *)
(* If PA does not prove its inconsistency, then its consistency is *)
(* undecidable. *)
(* ------------------------------------------------------------------------- *)
time HOLMS_RULE
`[GL_AX . {} |~ Not (Box (Box False))
--> Not (Box (Not (Box False))) &&
Not (Box (Not (Not (Box False))))]`;;
(* ------------------------------------------------------------------------- *)
(* If a sentence is equivalent to its own unprovability, and if PA does not *)
(* prove its inconsistency, then that sentence is undecidable. *)
(* ------------------------------------------------------------------------- *)
time HOLMS_RULE
`!p. [GL_AX . {} |~ Box (p <-> Not (Box p)) && Not (Box (Box False))
--> Not (Box p) && Not (Box (Not p))]`;;
(* ------------------------------------------------------------------------- *)
(* If a reflection principle implies the second iterated consistency *)
(* assertion, then the converse implication holds too. *)
(* ------------------------------------------------------------------------- *)
time HOLMS_RULE
`!p. [GL_AX . {} |~ Box ((Box p --> p) --> Diam (Diam True))
--> (Diam (Diam True) --> (Box p --> p))]`;;
(* ------------------------------------------------------------------------- *)
(* A Godel sentence is equiconsistent with a consistency statement *)
(* ------------------------------------------------------------------------- *)
time HOLMS_RULE
`!p. [GL_AX . {} |~ Box (p <-> Not (Box p)) <->
Box (p <-> Not (Box False))]`;;
(* ------------------------------------------------------------------------- *)
(* For any arithmetical sentences p q, p is equivalent to unprovability *)
(* of q --> p iff p is equivalent to consistency of q *)
(* ------------------------------------------------------------------------- *)
time HOLMS_RULE
`!p q. [GL_AX . {} |~ Dotbox (p <-> Not Box (q --> p)) <->
Dotbox (p <-> Diam q)]`;;
(* ------------------------------------------------------------------------- *)
(* Valid in GL but not in K. *)
(* ------------------------------------------------------------------------- *)
time HOLMS_BUILD_COUNTERMODEL
`!a. [GL_AX . {} |~ Box Diam Box Diam a <-> Box Diam a]`;;
(* ------------------------------------------------------------------------- *)
(* Example of countermodel. *)
(* There exists an arithmetical sentece p such that it is consistent with PA *)
(* that both p is undecidable and it is provable that p is decidable *)
(* ------------------------------------------------------------------------- *)
time HOLMS_BUILD_COUNTERMODEL
`[GL_AX . {} |~ Box (Box p || Box Not p) --> Box p || Box Not p]`;;
(* ------------------------------------------------------------------------- *)
(* Basic tests. *)
(* ------------------------------------------------------------------------- *)
(* CPU time (user): 7.413296 *)
let test_prove tm =
try prove(tm,HOLMS_TAC) with Failure _ -> failwith (string_of_term tm)
in
time (map test_prove)
[`[GL_AX . {}
|~ Not Box p && Box (Box p --> p)
--> Diam (Not p && Box p && (Box p --> p) && Box (Box p --> p))]`;
`[GL_AX . {}
|~ Box (q <-> (Box q --> p)) --> Box (Box p --> p) --> Box p]`;
`[GL_AX . {} |~ Box (Box p --> p) <-> Box p]`;
`[GL_AX . {} |~ Dotbox Box p <-> Box p]`;
`[GL_AX . {} |~ Dotbox Box p <-> Box Dotbox p]`;
`[GL_AX . {} |~ Dotbox p <-> Dotbox Dotbox p]`;
`[GL_AX . {} |~ Diam p && Box q --> Diam (p && q)]`;
`[GL_AX . {} |~ Box (p && q) --> Box p && Box q]`;
`[GL_AX . {} |~ Box (Box p --> p) <-> Box (Box p && p)]`;
`[GL_AX . {} |~ Box Diam False --> Box False]`;
`[GL_AX . {} |~ Box (p <-> Box p) <-> Box (p <-> True)]`;
`[GL_AX . {} |~ Box (p <-> Box p) --> Box (p <-> True)]`;
`[GL_AX . {} |~ Box (p <-> True) --> Box (p <-> Box p)]`;
`[GL_AX . {} |~ Box (p <-> Not (Box p)) <-> Box (p <-> Not (Box False))]`;
`[GL_AX . {} |~ Box (p <-> Box (Not p)) <-> Box (p <-> (Box False))]`;
`[GL_AX . {} |~ Box (p <-> Not (Box (Not p))) <-> Box (p <-> False)]`;
`[GL_AX . {}
|~ Box ((Box p --> p) --> Not Box Box False) --> Box Box False]`];;
(* ------------------------------------------------------------------------- *)
(* Further tests. *)
(* ------------------------------------------------------------------------- *)
(* CPU time (user): 19.381427 *)
let gl_theorems =
[("GL_Godel_sentence_equiconsistent_consistency",
`Box (p <-> Not Box p) <-> Box (p <-> Not Box False)`);
("GL_PA_ignorance", `Box False <-> Box Diam p`);
("GL_PA_undecidability_of_consistency",
`Not Box Box False --> Not Box Not Box False && Not Box Not Not Box False`);
("GL_and_assoc_th", `(p && q) && r <-> p && q && r`);
("GL_and_comm_th", `p && q <-> q && p`);
("GL_and_left_th", `p && q --> p`);
("GL_and_left_true_th", `True && p <-> p`);
("GL_and_or_ldistrib_th", `p && (q || r) <-> p && q || p && r`);
("GL_and_pair_th", `p --> q --> p && q`);
("GL_and_right_th", `p && q --> q`);
("GL_and_rigth_true_th", `p && True <-> p`);
("GL_and_subst_left_th", `(p1 <-> p2) --> (p1 && q <-> p2 && q)`);
("GL_and_subst_right_th", `(q1 <-> q2) --> (p && q1 <-> p && q2)`);
("GL_arithmetical_fixpoint",
`Dotbox (p <-> Not Box (q --> p)) <-> Dotbox (p <-> Diam q)`);
("GL_axiom_addimp", `p --> q --> p`);
("GL_axiom_and", `p && q <-> (p --> q --> False) --> False`);
("GL_axiom_boximp", `Box (p --> q) --> Box p --> Box q`);
("GL_axiom_distribimp", `(p --> q --> r) --> (p --> q) --> p --> r`);
("GL_axiom_doubleneg", `((p --> False) --> False) --> p`);
("GL_axiom_iffimp1", `(p <-> q) --> p --> q`);
("GL_axiom_iffimp2", `(p <-> q) --> q --> p`);
("GL_axiom_impiff", `(p --> q) --> (q --> p) --> (p <-> q)`);
("GL_axiom_lob", `Box (Box p --> p) --> Box p`);
("GL_axiom_not", `Not p <-> p --> False`);
("GL_axiom_or", `p || q <-> Not (Not p && Not q)`);
("GL_axiom_true", `True <-> False --> False`);
("GL_box_and_inv_th", `Box p && Box q --> Box (p && q)`);
("GL_box_and_th", `Box (p && q) --> Box p && Box q`);
("GL_box_iff_th", `Box (p <-> q) --> (Box p <-> Box q)`);
("GL_contrapos_eq_th", `p --> q <-> Not q --> Not p`);
("GL_contrapos_th", `(p --> q) --> Not q --> Not p`);
("GL_crysippus_th", `Not (p --> q) <-> p && Not q`);
("GL_de_morgan_and_th", `Not (p && q) <-> Not p || Not q`);
("GL_de_morgan_or_th", `Not (p || q) <-> Not p && Not q`);
("GL_dot_box", `Box p --> Box p && Box Box p`);
("GL_ex_falso_th", `False --> p`);
("GL_iff_def_th", `(p <-> q) <-> (p --> q) && (q --> p)`);
("GL_iff_refl_th", `p <-> p`);
("GL_iff_sym_th", `(p <-> q) --> (q <-> p)`);
("GL_imp_contr_th", `(p --> False) --> p --> q`);
("GL_imp_mono_th", `(p' --> p) && (q --> q') --> (p --> q) --> p' --> q'`);
("GL_imp_refl_th", `p --> p`);
("GL_imp_swap_th", `(p --> q --> r) --> q --> p --> r`);
("GL_imp_trans_th", `(q --> r) --> (p --> q) --> p --> r`);
("GL_imp_truefalse_th", `(q --> False) --> p --> (p --> q) --> False`);
("GL_modusponens_th", `(p --> q) && p --> q`);
("GL_nc_th", `p && Not p --> False`);
("GL_not_not_false_th", `(p --> False) --> False <-> p`);
("GL_not_not_th", `Not Not p <-> p`);
("GL_not_true_th", `Not True <-> False`);
("GL_or_assoc_left_th", `p || q || r --> (p || q) || r`);
("GL_or_assoc_right_th", `(p || q) || r --> p || q || r`);
("GL_or_assoc_th", `p || q || r <-> (p || q) || r`);
("GL_or_left_th", `q --> p || q`); ("GL_or_lid_th", `False || p <-> p`);
("GL_or_rid_th", `p || False <-> p`); ("GL_or_right_th", `p --> p || q`);
("GL_reflection_and_iterated_consistency",
`Box ((Box p --> p) --> Diam Diam True) -->
Diam Diam True -->
Box p -->
p`);
("GL_schema_4", `Box p --> Box Box p`);
("GL_second_incompleteness_theorem",
`Not Box False --> Not Box Diam True`);
("GL_tnd_th", `p || Not p`); ("GL_truth_th", `True`);
("GL_undecidability_of_Godels_formula",
`Box (p <-> Not Box p) && Not Box Box False -->
Not Box p && Not Box Not p`);
("GL_undecidability_of_godels_formula",
`Box (p <-> Not Box p) && Not Box Box False -->
Not Box p && Not Box Not p`)] in
let test_prove (s,tm) =
let th = try GL_RULE (mk_comb(`MODPROVES GL_AX {}`,tm))
with Failure _ -> failwith s in
s,th in
time (map test_prove) gl_theorems;;
(* ------------------------------------------------------------------------- *)
(* Further examples of countermodels. *)
(* ------------------------------------------------------------------------- *)
(* CPU time (user): 47.994603 *)
time HOLMS_BUILD_COUNTERMODEL
`[GL_AX . {}
|~ Dotbox (p <-> (q && (Box (p --> q) --> Box Not p))) <->
Dotbox (p <-> (q && Box Not q))]`;;
(* CPU time (user): 896.120732 *)
(* About 15 min. *)
time HOLMS_BUILD_COUNTERMODEL
`[GL_AX . {}
|~ Dotbox (p <-> (Diam p --> q && Not Box (p --> q))) <->
Dotbox (p <-> (Diam True --> q && Not Box (Box False --> q)))]`;;