-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
232 lines (194 loc) · 8.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import argparse
import os
import sys
import torch
import numpy as np
import random
from trainer_benchmark import ocl_train_mnist, ocl_train_cifar
from utils.utils import get_exp_id, set_config_attr, get_config_attr
from yacs.config import CfgNode
from nets.classifier import ResNetClassifier, ResNetClassifierWObj
from nets.simplenet import mnist_simple_net_400width_classlearning_1024input_10cls_1ds
from ocl import NaiveWrapper, ExperienceReplay, AGEM, ExperienceEvolveApprox
def train(cfg, local_rank, distributed, tune=False):
is_ocl = hasattr(cfg.EXTERNAL.OCL, 'ALGO') and cfg.EXTERNAL.OCL.ALGO != 'PLAIN'
task_incremental = get_config_attr(cfg, 'EXTERNAL.OCL.TASK_INCREMENTAL', default=False)
cfg.TUNE = tune
algo = cfg.EXTERNAL.OCL.ALGO
if hasattr(cfg,'MNIST'):
if cfg.MNIST.TASK == 'split':
goal = 'split_mnist'
elif cfg.MNIST.TASK == 'permute':
goal = 'permute_mnist'
elif cfg.MNIST.TASK == 'rotate':
goal = 'rotated_mnist'
if hasattr(cfg, 'CIFAR'):
goal = 'split_cifar'
if get_config_attr(cfg, 'CIFAR.DATASET', default="") == 'CIFAR100':
goal = 'split_cifar100'
if get_config_attr(cfg, 'CIFAR.MINI_IMAGENET', default=0):
goal = 'split_mini_imagenet'
if hasattr(cfg,'MNIST'):
num_of_datasets = 1 if not task_incremental else get_config_attr(cfg, 'EXTERNAL.OCL.TASK_NUM', totype=int)
num_of_classes = 10 if not task_incremental else get_config_attr(cfg, 'EXTERNAL.OCL.CLASS_NUM', totype=int)
base_model = mnist_simple_net_400width_classlearning_1024input_10cls_1ds(num_of_datasets=num_of_datasets,
num_of_classes=num_of_classes,
task_incremental=task_incremental)
base_model.cfg = cfg
elif hasattr(cfg, 'CIFAR'):
if goal == 'split_cifar':
num_of_datasets = 1 if not task_incremental else get_config_attr(cfg, 'EXTERNAL.OCL.TASK_NUM', totype=int)
num_of_classes = 10 if not task_incremental else get_config_attr(cfg, 'EXTERNAL.OCL.CLASS_NUM', totype=int)
elif goal == 'split_cifar100':
num_of_datasets = 1 if not task_incremental else get_config_attr(cfg, 'EXTERNAL.OCL.TASK_NUM', totype=int)
num_of_classes = 100 if not task_incremental else get_config_attr(cfg, 'EXTERNAL.OCL.CLASS_NUM', totype=int)
elif goal == 'split_mini_imagenet':
num_of_datasets = 1 if not task_incremental else get_config_attr(cfg, 'EXTERNAL.OCL.TASK_NUM', totype=int)
num_of_classes = 100 if not task_incremental else get_config_attr(cfg, 'EXTERNAL.OCL.CLASS_NUM', totype=int)
base_model = ResNetClassifier(cfg, depth='18', mlp=1, ignore_index=-100, num_of_datasets=num_of_datasets,
num_of_classes=num_of_classes, task_incremental=task_incremental, goal=goal)
base_model.cfg = cfg
else:
base_model = ResNetClassifier(cfg)
device = torch.device(cfg.MODEL.DEVICE)
base_model.to(device)
if cfg.EXTERNAL.OPTIMIZER.ADAM:
optimizer = torch.optim.Adam(
filter(lambda x: x.requires_grad, base_model.parameters()),
lr=cfg.SOLVER.BASE_LR, betas=(0.9, 0.999)
)
else:
optimizer = torch.optim.SGD(
filter(lambda x: x.requires_grad, base_model.parameters()),
lr=cfg.SOLVER.BASE_LR
)
# algorithm specific model wrapper
x_size = 3 * 2 * base_model.cfg.EXTERNAL.IMAGE_SIZE ** 2 if goal == 'classification' else \
3 * base_model.cfg.EXTERNAL.IMAGE_SIZE ** 2
if goal == 'split_mnist' or goal == 'permute_mnist' or goal == 'rotated_mnist': x_size = 28 * 28
if goal == 'split_cifar' or goal == 'split_cifar100': x_size = 3 * 32 * 32
if goal == 'split_mini_imagenet': x_size = 3 * 84 * 84
if algo == 'ER':
model = ExperienceReplay(base_model, optimizer, x_size, base_model.cfg, goal)
elif algo == 'VERX':
model = ExperienceEvolveApprox(base_model, optimizer, x_size, base_model.cfg, goal)
elif algo == 'AGEM':
model = AGEM(base_model, optimizer, x_size, base_model.cfg, goal)
elif algo == 'naive':
model = NaiveWrapper(base_model, optimizer, x_size, base_model.cfg, goal)
model.to(device)
use_mixed_precision = cfg.DTYPE == "float16"
arguments = {"iteration": 0, "global_step": 0, "epoch": 0}
output_dir = cfg.OUTPUT_DIR
writer = None
epoch_num = 1
for e in range(epoch_num):
print("epoch")
arguments['iteration'] = 0
epoch = arguments['epoch']
if goal == 'split_mnist' or goal == 'permute_mnist' or goal == 'rotated_mnist':
ocl_train_mnist(model, optimizer, None, device, arguments, writer, epoch, goal, tune=tune)
elif goal == 'split_cifar' or goal == 'split_cifar100' or goal == 'split_mini_imagenet':
ocl_train_cifar(model, optimizer, None, device, arguments, writer, epoch, goal, tune=tune)
else:
raise NotImplementedError
arguments['epoch'] += 1
with open(os.path.join(output_dir, 'model.bin'),'wb') as wf:
torch.save(model.state_dict(), wf)
# else:
# break
if is_ocl and hasattr(model, 'dump_reservoir') and args.dump_reservoir:
model.dump_reservoir(os.path.join(cfg.OUTPUT_DIR, 'mem_dump.pkl'), verbose=args.dump_reservoir_verbose)
return model
def set_cfg_from_args(args, cfg):
cfg_params = args.cfg
if cfg_params is None: return
for param in cfg_params:
k, v = param.split('=')
set_config_attr(cfg, k, v)
def count_params(m: torch.nn.Module, only_trainable: bool = False):
"""
returns the total number of parameters used by `m` (only counting
shared parameters once); if `only_trainable` is True, then only
includes parameters with `requires_grad = True`
"""
parameters = m.parameters()
if only_trainable:
parameters = list(p for p in parameters if p.requires_grad)
unique = dict((p.data_ptr(), p) for p in parameters).values()
return sum(p.numel() for p in unique)
def main(args):
if '%id' in args.name:
exp_name = args.name.replace('%id', get_exp_id())
else:
exp_name = args.name
combined_cfg = CfgNode(new_allowed=True)
combined_cfg.merge_from_file(args.config)
cfg = combined_cfg
cfg.EXTERNAL.EXPERIMENT_NAME = exp_name
cfg.SEED = args.seed
cfg.DEBUG = args.debug
set_cfg_from_args(args, cfg)
output_dir = get_config_attr(cfg, 'OUTPUT_DIR', default='')
if output_dir == '.': output_dir = 'runs/'
cfg.OUTPUT_DIR = os.path.join(output_dir,
'{}_{}'.format(cfg.EXTERNAL.EXPERIMENT_NAME, cfg.SEED))
cfg.MODE = 'train'
# cfg.freeze()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
distributed = num_gpus > 1
local_rank = int(os.environ.get('LOCAL_RANK', 0))
if distributed:
torch.cuda.set_device(local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
output_dir = cfg.OUTPUT_DIR
# save overloaded model config in the output directory
model = train(cfg, local_rank, distributed, tune=args.tune)
output_args_path = os.path.join(output_dir, 'args.txt')
wf = open(output_args_path, 'w')
wf.write(' '.join(sys.argv))
wf.close()
def seed_everything(seed):
'''
:param seed:
:param device:
:return:
'''
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# some cudnn methods can be random even after fixing the seed
# unless you tell it to be deterministic
torch.backends.cudnn.deterministic = True
def seed_everything_old(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', type=int)
parser.add_argument('--name', type=str, default='%id')
parser.add_argument('--config', type=str, default='config.yaml')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--seed_old', action='store_true')
parser.add_argument('--n_runs', type=int, default=1)
parser.add_argument('--tune', action='store_true')
parser.add_argument('--cfg', nargs='*')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--dump_reservoir', action='store_true')
parser.add_argument('--dump_reservoir_verbose', action='store_true')
parser.add_argument('--single_word', action='store')
args = parser.parse_args()
if not args.seed_old:
seed_everything(args.seed)
else:
seed_everything_old(args.seed)
n_runs = args.n_runs
for i in range(n_runs):
main(args)