forked from idekerlab/DrugCell
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDrugCell_params.txt
executable file
·41 lines (38 loc) · 1.13 KB
/
DrugCell_params.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
[Global_Params]
model_name='DrugCell'
data_url="https://ftp.mcs.anl.gov/pub/candle/public/improve/model_curation_data/DrugCell/drugcell_data.tar.gz"
improve_data_url="https://ftp.mcs.anl.gov/pub/candle/public/improve/benchmarks/single_drug_drp/benchmark-data-pilot1/csa_data/raw_data"
train_data_type='CCLE'
data_type='CTRPv2,CCLE,GDSCv1,GDSCv2,gCSI'
predict_url = 'http://drugcell.ucsd.edu/downloads/drugcell_all.txt'
model_url = 'http://drugcell.ucsd.edu/downloads/drugcell_v1.pt'
original_data="drugcell_data.tar.gz"
data_predict='drugcell_test.txt'
data_model='model_final.pt'
load = "drugcell_v1.pt"
train_data = "drugcell_train.txt"
test_data = "drugcell_test.txt"
val_data = "drugcell_val.txt"
onto_file = "drugcell_ont.txt"
genotype="cell2mutation.txt"
fingerprint='drug2fingerprint.txt'
cell2id='cell2ind.txt'
drug2id='drug2ind.txt'
gene2id='gene2ind.txt'
hidden='Hidden/'
output='Result/'
result='Result/'
cross_study='yes'
#Model parameter
metric='auc'
CUDA_ID = 0
learning_rate = 0.0001
batch_size = 1024
eps=0.00001
genotype_hiddens = 6
drug_hiddens='100,50,6'
final_hiddens=6
epochs=200
optimizer = "adam"
loss = "mse"
improve_analysis='no'