-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_joint.py
269 lines (227 loc) · 9.96 KB
/
train_joint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# !/usr/local/bin/python3
import os
import time
import argparse
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from datafolder.folder import Train_Dataset
from net import *
######################################################################
# Settings
# --------
use_gpu = True
Sigma = 1
Lambda = 0.5
dataset_dict = {
'market' : 'Market-1501',
'duke' : 'DukeMTMC-reID',
}
model_dict = {
'resnet18' : ResNet18_nFC,
'resnet34' : ResNet34_nFC,
'resnet50' : ResNet50_nFC,
'densenet' : DenseNet121_nFC,
'resnet50_softmax' : ResNet50_nFC_softmax,
'resnet50_single' : ResNet50_single,
'resnet50_joint' : ResNet50_joint,
}
######################################################################
# Argument
# --------
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--data-path', default='/root/dataset/', type=str, help='path to the dataset')
parser.add_argument('--dataset', default='market', type=str, help='dataset')
parser.add_argument('--model', default='resnet50_joint', type=str, help='model')
parser.add_argument('--batch-size', default=32, type=int, help='batch size')
parser.add_argument('--num-epoch', default=60, type=int, help='num of epoch')
parser.add_argument('--which-epoch',default='last', type=str, help='0,1,2,3...or last')
parser.add_argument('--num-workers', default=1, type=int, help='num_workers')
parser.add_argument('--stride', default=2, type=int, help='stride')
parser.add_argument('--erasing_p', default=0, type=float, help='Random Erasing probability, in [0,1]')
parser.add_argument('--warm_epoch', default=0, type=int, help='the first K epoch that needs warm up')
parser.add_argument('--lr', default=0.05, type=float, help='learning rate')
parser.add_argument('--continuing', action='store_true', help='continue the training' )
args = parser.parse_args()
assert args.dataset in dataset_dict.keys()
assert args.model in model_dict.keys()
data_dir = args.data_path
model_dir = os.path.join('./checkpoints', args.dataset, args.model)
if not os.path.isdir(model_dir):
os.makedirs(model_dir)
print("Sigma:",Sigma)
print("Lambda:",Lambda)
print("batch_size:",args.batch_size)
print("stride:",args.stride)
print("erasing_p:",args.erasing_p)
print("warm_epoch:",args.warm_epoch)
print("lr:",args.lr)
print("num_epoch:",args.num_epoch)
######################################################################
# Function
# --------
def save_network(network, epoch_label):
save_filename = 'net_%s.pth'% epoch_label
save_path = os.path.join(model_dir, save_filename)
torch.save(network.cpu().state_dict(), save_path)
if use_gpu:
network.cuda()
def load_network(network):
save_path = os.path.join(model_dir,'net_%s.pth'%args.which_epoch)
network.load_state_dict(torch.load(save_path))
return network
######################################################################
# Draw Curve
#-----------
x_epoch = []
y_loss = {} # loss history
y_loss['train'] = []
y_loss['val'] = []
y_err = {}
y_err['train'] = []
y_err['val'] = []
fig = plt.figure()
ax0 = fig.add_subplot(121, title="loss")
ax1 = fig.add_subplot(122, title="top1err")
def draw_curve(current_epoch):
x_epoch.append(current_epoch)
ax0.plot(x_epoch, y_loss['train'], 'bo-', label='train')
ax0.plot(x_epoch, y_loss['val'], 'ro-', label='val')
ax1.plot(x_epoch, y_err['train'], 'bo-', label='train')
ax1.plot(x_epoch, y_err['val'], 'ro-', label='val')
if current_epoch == 0:
ax0.legend()
ax1.legend()
fig.savefig( os.path.join(model_dir, 'train.jpg'))
######################################################################
# DataLoader
# ---------
image_datasets = {}
image_datasets['train'] = Train_Dataset(data_dir, dataset_name=dataset_dict[args.dataset],
train_val='train', erasing_p = args.erasing_p, SIZE = (384, 128))
image_datasets['val'] = Train_Dataset(data_dir, dataset_name=dataset_dict[args.dataset],
train_val='query', SIZE = (384, 128))
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
images, indices, labels, ids, cams, names = next(iter(dataloaders['train']))
num_label = image_datasets['train'].num_label()
num_id = image_datasets['train'].num_id()
labels_list = image_datasets['train'].labels()
distribution = image_datasets['train'].distributions()
distribution = torch.from_numpy(distribution).float()
weights = torch.exp(-distribution/(Sigma*Sigma))
######################################################################
# Model and Optimizer
# ------------------
model = model_dict[args.model](num_label, num_id, args.stride)
if args.continuing:
model = load_network(model)
print("continue the training")
else:
print("the new training")
if use_gpu:
model = model.cuda()
weights = weights.cuda()
# loss
criterion_attr = nn.BCELoss(weight = weights)
criterion_reid = nn.CrossEntropyLoss()
# optimizer
ignored_params = (list(map(id, model.classifier_attribute.parameters()))+list(map(id, model.classifier_reid.parameters())))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
optimizer = torch.optim.SGD([
{'params': base_params, 'lr': 0.1*args.lr},
{'params': model.classifier_attribute.parameters(), 'lr': args.lr},
{'params': model.classifier_reid.parameters(), 'lr': args.lr}
], weight_decay = 5e-4, momentum = 0.9, nesterov = True)
#optimizer = torch.optim.SGD(model.parameters(), lr = 0.001, momentum = 0.9, weight_decay = 5e-4, nesterov = True)
exp_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size = 40, gamma = 0.1)
######################################################################
# Training the model
# ------------------
def train_model(model, criterion_attr, criterion_reid, optimizer, scheduler, num_epochs, Lambda):
since = time.time()
warm_up = 0.1 # We start from the 0.1*lrRate
warm_iteration = round(dataset_sizes['train']/args.batch_size)*args.warm_epoch # first 5 epoch
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
#scheduler.step()
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
running_loss_id = 0.0
running_corrects_id = 0
# Iterate over data.
for count, data in enumerate(dataloaders[phase]):
# get the inputs
images, indices, labels, ids, cams, names = data
# wrap them in Variable
if use_gpu:
images = images.cuda()
labels = labels.cuda()
indices = indices.cuda()
images = images
labels = labels.float()
indices = indices
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs_attr, outputs_reid = model(images)
attr_loss = criterion_attr(outputs_attr, labels)
reid_loss = criterion_reid(outputs_reid, indices)
joint_loss = Lambda * reid_loss + (1 - Lambda) * attr_loss
# backward + optimize only if in training phase
if epoch<args.warm_epoch and phase == 'train':
warm_up = min(1.0, warm_up + 0.9 / warm_iteration)
joint_loss *= warm_up
if phase == 'train':
joint_loss.backward()
optimizer.step()
preds = torch.gt(outputs_attr, torch.ones_like(outputs_attr)/2 ).data
# statistics
running_loss += attr_loss.item()
running_corrects += torch.sum(preds.byte() == labels.data.byte()).item() / num_label
#print('step : ({}/{}) | loss : {:.4f}'.format(count*args.batch_size, dataset_sizes[phase], label_loss.item()))
running_loss_id += reid_loss.item()
v, i = torch.max(outputs_reid, 1)
running_corrects_id += torch.sum(indices == i).item()
epoch_loss = running_loss / len(dataloaders[phase])
epoch_acc = running_corrects / dataset_sizes[phase]
epoch_loss_id = running_loss_id / len(dataloaders[phase])
epoch_acc_id = running_corrects_id / dataset_sizes[phase]
if phase == 'train':
print('{} Loss: {:.4f} Acc: {:.4f} ID_Loss: {:.4f} ID_Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc, epoch_loss_id, epoch_acc_id))
else:
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
y_loss[phase].append(epoch_loss)
y_err[phase].append(1.0-epoch_acc)
# deep copy the model
if phase == 'val':
last_model_wts = model.state_dict()
if epoch%10 == 9:
save_network(model, epoch)
draw_curve(epoch)
else:
scheduler.step()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
# load best model weights
model.load_state_dict(last_model_wts)
save_network(model, 'last')
######################################################################
# Main
# -----
model = train_model(model, criterion_attr, criterion_reid, optimizer, exp_lr_scheduler,
num_epochs = args.num_epoch, Lambda = Lambda)