-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathdemo_scannet.py
172 lines (153 loc) · 7.84 KB
/
demo_scannet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
import argparse
import glob
import multiprocessing as mp
import os
import time
import cv2
from matplotlib import pyplot as plt
import tqdm
import numpy as np
import matplotlib as mpl
from tools.util import *
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger
from detectron2.utils.visualizer import ColorMode, Visualizer
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
from open_vocab_seg import add_ovseg_config
from open_vocab_seg.utils import VisualizationDemoIndoor
# from sam3d import *
# constants
WINDOW_NAME = "Open vocabulary segmentation"
def setup_cfg(args):
# load config from file and command-line arguments
cfg = get_cfg()
# for poly lr schedule
add_deeplab_config(cfg)
add_ovseg_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
return cfg
def get_parser():
parser = argparse.ArgumentParser(description="Detectron2 demo for open vocabulary segmentation")
parser.add_argument(
"--config-file",
default="configs/ovseg_swinB_vitL_demo.yaml",
metavar="FILE",
help="path to config file",
)
""" parser.add_argument(
"--input",
nargs="+",
help="A list of space separated input images; "
"or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument(
"--class-names",
nargs="+",
help="A list of user-defined class_names"
) """
""" parser.add_argument(
"--output",
help="A file or directory to save output visualizations. "
"If not given, will show output in an OpenCV window.",
) """
parser.add_argument(
"--opts",
help="Modify config options using the command-line 'KEY VALUE' pairs",
default=[],
nargs=argparse.REMAINDER,
)
parser.add_argument('--rgb_path', type=str, default='UI/scannetv2/examples', help='the path of rgb data')
parser.add_argument('--data_path', type=str, default='UI/scannetv2', help='the path of pointcload data')
parser.add_argument('--color_name', type=str, default='5560.jpg', help='the name of segment image')
parser.add_argument('--merge_pcd', action ='store_true', help='merge point cloud or not')
parser.add_argument('--save_path', type=str, default='', help='Where to save the pcd results')
parser.add_argument('--scannetv2_train_path', type=str, default='datasets/scannet_preprocess/meta_data/scannetv2_train.txt', help='the path of scannetv2_train.txt')
parser.add_argument('--scannetv2_val_path', type=str, default='datasets/scannet_preprocess/meta_data/scannetv2_val.txt', help='the path of scannetv2_val.txt')
parser.add_argument('--img_size', default=[640,480])
parser.add_argument('--voxel_size', default=0.05)
parser.add_argument('--th', default=50, help='threshold of ignoring small groups to avoid noise pixel')
return parser
if __name__ == "__main__":
mp.set_start_method("spawn", force=True)
args = get_parser().parse_args()
setup_logger(name="fvcore")
logger = setup_logger()
logger.info("Arguments: " + str(args))
cfg = setup_cfg(args)
demo = VisualizationDemoIndoor(cfg)
from datasets.scannet_preprocess.meta_data.scannet200_constants import CLASS_LABELS_200
class_names = list(CLASS_LABELS_200)
if True:
if True:
""" args.input = glob.glob(os.path.expanduser(args.input[0]))
assert args.input, "The input path(s) was not found" """
voxelize = Voxelize(voxel_size=args.voxel_size, mode="train", keys=("coord", "color", "group", "sem_map"))
# if not os.path.exists(args.save_path):
# os.makedirs(args.save_path)
scene_names = sorted(os.listdir(args.rgb_path))
for scene_name in scene_names:
# use PIL, to be consistent with evaluation
if os.path.exists(os.path.join(args.save_path, scene_name + ".pth")):
continue
if args.color_name == '':
color_names = sorted(os.listdir(os.path.join(args.rgb_path, scene_name, 'color')), key=lambda a: int(os.path.basename(a).split('.')[0]), reverse=True)
else:
color_names = [args.color_name]
pcd_list = []
for i, color_name in enumerate(color_names):
path = os.path.join(args.rgb_path, scene_name, 'color', color_name)
start_time = time.time()
print(color_name, flush=True)
predictions, output2D, output3D = demo.run_on_pcd(args.rgb_path, scene_name, color_name, class_names)
pcd_dict = output3D['pcd_depth']
if len(pcd_dict["coord"]) == 0:
continue
pcd_dict = voxelize(pcd_dict)
pcd_list.append(pcd_dict)
logger.info(
"{}: {} in {:.2f}s".format(
path,
"detected {} instances".format(len(predictions["instances"]))
if "instances" in predictions
else "finished",
time.time() - start_time,
)
)
if True:
output2D['sem_seg_on_rgb'].save('outputs/RGB_Semantic_SAM.png')
output2D['sem_seg_on_depth'].save('outputs/Depth_Semantic_SAM.png')
output2D['sam_seg_on_rgb'].save('outputs/RGB_Semantic_SAM_Mask.png')
output2D['sam_seg_on_depth'].save('outputs/Depth_Semantic_SAM_Mask.png')
""" rgb_3d_sam = demo.get_xyzrgb('outputs/RGB_Semantic_SAM.png', path)
depth_3d_sam = demo.get_xyzrgb('outputs/Depth_Semantic_SAM.png', path)
rgb_3d_sam_mask = demo.get_xyzrgb('outputs/RGB_Semantic_SAM_Mask.png', path)
depth_3d_sam_mask = demo.get_xyzrgb(outputs/'Depth_Semantic_SAM_Mask.png', path) """
rgb_3d_sem = output3D['rgb_3d_sem']
depth_3d_sem = output3D['depth_3d_sem']
rgb_3d_sam = output3D['rgb_3d_sam']
depth_3d_sam = output3D['depth_3d_sam']
np.savez('outputs/xyzrgb.npz', rgb_3d_sam = rgb_3d_sem, depth_3d_sam = depth_3d_sem, rgb_3d_sam_mask = rgb_3d_sam, depth_3d_sam_mask = depth_3d_sam)
demo.render_3d_video('outputs/xyzrgb.npz')
else:
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
cv2.imshow(WINDOW_NAME, output2D['sem_seg_on_rgb'].get_image()[:, :, ::-1])
if cv2.waitKey(0) == 27:
break # esc to quit
if args.merge_pcd:
with open(args.scannetv2_train_path) as train_file:
train_scenes = train_file.read().splitlines()
with open(args.scannetv2_val_path) as val_file:
val_scenes = val_file.read().splitlines()
if scene_name in train_scenes:
scene_path = os.path.join(args.data_path, "train", scene_name + ".pth")
elif scene_name in val_scenes:
scene_path = os.path.join(args.data_path, "val", scene_name + ".pth")
demo.merge_pcd(pcd_list, args.data_path, args.save_path, scene_path, args.voxel_size, args.th)
else:
raise NotImplementedError