-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
57 lines (44 loc) · 1.54 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from flask import Flask, render_template, jsonify, request
from src.helper import download_hugging_face_embeddings
from src.prompt import *
from langchain_pinecone import PineconeVectorStore
from langchain_community.llms import HuggingFaceEndpoint
from langchain.chains import RetrievalQA
from dotenv import load_dotenv
import os
app = Flask(__name__)
load_dotenv()
PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY')
HUGGINGFACEHUB_API_TOKEN = os.environ.get('HUGGINGFACEHUB_API_TOKEN')
os.environ['PINECONE_API_KEY'] = PINECONE_API_KEY
os.environ['HUGGINGFACEHUB_API_TOKEN'] = HUGGINGFACEHUB_API_TOKEN
embeddings = download_hugging_face_embeddings()
index_name = 'medichatbot2'
docsearch = PineconeVectorStore.from_existing_index(
index_name=index_name,
embedding=embeddings
)
retriever = docsearch.as_retriever(search_type='similarity', search_kwargs={"k": 5})
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
llm = HuggingFaceEndpoint(
repo_id=repo_id,
max_length=500,
temperature=0.3,
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
)
qa_chain = RetrievalQA.from_chain_type(
llm, retriever=retriever, chain_type_kwargs={"prompt": prompt}
)
@app.route('/')
def index():
return render_template('chat.html')
@app.route('/get', methods=['GET','POST'])
def chat():
msg = request.form['msg']
input = msg
print(input)
response = qa_chain({"query": msg})
print("Response: ", response['result'])
return str(response['result'])
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8080, debug=True)