-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathradix_sort.wgsl
498 lines (432 loc) · 21.1 KB
/
radix_sort.wgsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
// shader implementing gpu radix sort. More information in the beginning of gpu_rs.rs
// info:
// also the workgroup sizes are added in these prepasses
// before the pipeline is started the following constant definitionis are prepended to this shadercode
// const histogram_sg_size
// const histogram_wg_size
// const rs_radix_log2
// const rs_radix_size
// const rs_keyval_size
// const rs_histogram_block_rows
// const rs_scatter_block_rows
struct GeneralInfo {
num_keys: u32,
padded_size: u32,
even_pass: u32,
odd_pass: u32,
};
@group(0) @binding(0)
var<storage, read_write> infos: GeneralInfo;
@group(0) @binding(1)
var<storage, read_write> histograms : array<atomic<u32>>;
@group(0) @binding(2)
var<storage, read_write> keys : array<u32>;
@group(0) @binding(3)
var<storage, read_write> keys_b : array<u32>;
@group(0) @binding(4)
var<storage, read_write> payload_a : array<u32>;
@group(0) @binding(5)
var<storage, read_write> payload_b : array<u32>;
// layout of the histograms buffer
// +---------------------------------+ <-- 0
// | histograms[keyval_size] |
// +---------------------------------+ <-- keyval_size * histo_size
// | partitions[scatter_blocks_ru-1] |
// +---------------------------------+ <-- (keyval_size + scatter_blocks_ru - 1) * histo_size
// | workgroup_ids[keyval_size] |
// +---------------------------------+ <-- (keyval_size + scatter_blocks_ru - 1) * histo_size + workgroup_ids_size
// --------------------------------------------------------------------------------------------------------------
// Filling histograms and keys with default values (also resets the pass infos for odd and even scattering)
// --------------------------------------------------------------------------------------------------------------
@compute @workgroup_size({histogram_wg_size})
fn zero_histograms(@builtin(global_invocation_id) gid: vec3<u32>, @builtin(num_workgroups) nwg: vec3<u32>) {
if gid.x == 0u {
infos.even_pass = 0u;
infos.odd_pass = 1u; // has to be one, as on the first call to even pass + 1 % 2 is calculated
}
// here the histograms are set to zero and the partitions are set to 0xfffffffff to avoid sorting problems
let scatter_wg_size = histogram_wg_size;
let scatter_block_kvs = scatter_wg_size * rs_scatter_block_rows;
let scatter_blocks_ru = (infos.num_keys + scatter_block_kvs - 1u) / scatter_block_kvs;
let histo_size = rs_radix_size;
var n = (rs_keyval_size + scatter_blocks_ru - 1u) * histo_size;
let b = n;
if infos.num_keys < infos.padded_size {
n += infos.padded_size - infos.num_keys;
}
let line_size = nwg.x * {histogram_wg_size}u;
for (var cur_index = gid.x; cur_index < n; cur_index += line_size){
if cur_index >= n {
return;
}
if cur_index < rs_keyval_size * histo_size {
atomicStore(&histograms[cur_index], 0u);
}
else if cur_index < b {
atomicStore(&histograms[cur_index], 0u);
}
else {
keys[infos.num_keys + cur_index - b] = 0xFFFFFFFFu;
}
}
}
// --------------------------------------------------------------------------------------------------------------
// Calculating the histograms
// --------------------------------------------------------------------------------------------------------------
var<workgroup> smem : array<atomic<u32>, rs_radix_size>;
var<private> kv : array<u32, rs_histogram_block_rows>;
fn zero_smem(lid: u32) {
if lid < rs_radix_size {
atomicStore(&smem[lid], 0u);
}
}
fn histogram_pass(pass_: u32, lid: u32) {
zero_smem(lid);
workgroupBarrier();
for (var j = 0u; j < rs_histogram_block_rows; j++) {
let u_val = bitcast<u32>(kv[j]);
let digit = extractBits(u_val, pass_ * rs_radix_log2, rs_radix_log2);
atomicAdd(&smem[digit], 1u);
}
workgroupBarrier();
let histogram_offset = rs_radix_size * pass_ + lid;
if lid < rs_radix_size && atomicLoad(&smem[lid]) >= 0u {
atomicAdd(&histograms[histogram_offset], atomicLoad(&smem[lid]));
}
}
// the workgrpu_size can be gotten on the cpu by by calling pipeline.get_bind_group_layout(0).unwrap().get_local_workgroup_size();
fn fill_kv(wid: u32, lid: u32) {
let rs_block_keyvals: u32 = rs_histogram_block_rows * histogram_wg_size;
let kv_in_offset = wid * rs_block_keyvals + lid;
for (var i = 0u; i < rs_histogram_block_rows; i++) {
let pos = kv_in_offset + i * histogram_wg_size;
kv[i] = keys[pos];
}
}
fn fill_kv_keys_b(wid: u32, lid: u32) {
let rs_block_keyvals: u32 = rs_histogram_block_rows * histogram_wg_size;
let kv_in_offset = wid * rs_block_keyvals + lid;
for (var i = 0u; i < rs_histogram_block_rows; i++) {
let pos = kv_in_offset + i * histogram_wg_size;
kv[i] = keys_b[pos];
}
}
@compute @workgroup_size({histogram_wg_size})
fn calculate_histogram(@builtin(workgroup_id) wid: vec3<u32>, @builtin(local_invocation_id) lid: vec3<u32>) {
// efficient loading of multiple values
fill_kv(wid.x, lid.x);
// Accumulate and store histograms for passes
histogram_pass(3u, lid.x);
histogram_pass(2u, lid.x);
histogram_pass(1u, lid.x);
histogram_pass(0u, lid.x);
}
// --------------------------------------------------------------------------------------------------------------
// Prefix sum over histogram
// --------------------------------------------------------------------------------------------------------------
fn prefix_reduce_smem(lid: u32) {
var offset = 1u;
for (var d = rs_radix_size >> 1u; d > 0u; d = d >> 1u) { // sum in place tree
workgroupBarrier();
if lid < d {
let ai = offset * (2u * lid + 1u) - 1u;
let bi = offset * (2u * lid + 2u) - 1u;
atomicAdd(&smem[bi], atomicLoad(&smem[ai]));
}
offset = offset << 1u;
}
if lid == 0u {
atomicStore(&smem[rs_radix_size - 1u], 0u);
} // clear the last element
for (var d = 1u; d < rs_radix_size; d = d << 1u) {
offset = offset >> 1u;
workgroupBarrier();
if lid < d {
let ai = offset * (2u * lid + 1u) - 1u;
let bi = offset * (2u * lid + 2u) - 1u;
let t = atomicLoad(&smem[ai]);
atomicStore(&smem[ai], atomicLoad(&smem[bi]));
atomicAdd(&smem[bi], t);
}
}
}
@compute @workgroup_size({prefix_wg_size})
fn prefix_histogram(@builtin(workgroup_id) wid: vec3<u32>, @builtin(local_invocation_id) lid: vec3<u32>) {
// the work group id is the pass, and is inverted in the next line, such that pass 3 is at the first position in the histogram buffer
let histogram_base = (rs_keyval_size - 1u - wid.x) * rs_radix_size;
let histogram_offset = histogram_base + lid.x;
// the following coode now corresponds to the prefix calc code in fuchsia/../shaders/prefix.h
// however the implementation is taken from https://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf listing 2 (better overview, nw subgroup arithmetic)
// this also means that only half the amount of workgroups is spawned (one workgroup calculates for 2 positioons)
// the smemory is used from the previous section
atomicStore(&smem[lid.x], atomicLoad(&histograms[histogram_offset]));
atomicStore(&smem[lid.x + {prefix_wg_size}u], atomicLoad(&histograms[histogram_offset + {prefix_wg_size}u]));
prefix_reduce_smem(lid.x);
workgroupBarrier();
atomicStore(&histograms[histogram_offset], atomicLoad(&smem[lid.x]));
atomicStore(&histograms[histogram_offset + {prefix_wg_size}u], atomicLoad(&smem[lid.x + {prefix_wg_size}u]));
}
// --------------------------------------------------------------------------------------------------------------
// Scattering the keys
// --------------------------------------------------------------------------------------------------------------
// General note: Only 2 sweeps needed here
var<workgroup> scatter_smem: array<u32, rs_mem_dwords>; // note: rs_mem_dwords is caclulated in the beginngin of gpu_rs.rs
// | Dwords | Bytes
// ----------+-------------------------------------------+--------
// Lookback | 256 | 1 KB
// Histogram | 256 | 1 KB
// Prefix | 4-84 | 16-336
// Reorder | RS_WORKGROUP_SIZE * RS_SCATTER_BLOCK_ROWS | 2-8 KB
fn partitions_base_offset() -> u32 { return rs_keyval_size * rs_radix_size;}
fn smem_prefix_offset() -> u32 { return rs_radix_size + rs_radix_size;}
fn rs_prefix_sweep_0(idx: u32) -> u32 { return scatter_smem[smem_prefix_offset() + rs_mem_sweep_0_offset + idx];}
fn rs_prefix_sweep_1(idx: u32) -> u32 { return scatter_smem[smem_prefix_offset() + rs_mem_sweep_1_offset + idx];}
fn rs_prefix_sweep_2(idx: u32) -> u32 { return scatter_smem[smem_prefix_offset() + rs_mem_sweep_2_offset + idx];}
fn rs_prefix_load(lid: u32, idx: u32) -> u32 { return scatter_smem[rs_radix_size + lid + idx];}
fn rs_prefix_store(lid: u32, idx: u32, val: u32) { scatter_smem[rs_radix_size + lid + idx] = val;}
fn is_first_local_invocation(lid: u32) -> bool { return lid == 0u;}
fn histogram_load(digit: u32) -> u32 {
return atomicLoad(&smem[digit]);
}
fn histogram_store(digit: u32, count: u32) {
atomicStore(&smem[digit], count);
}
const rs_partition_mask_status : u32 = 0xC0000000u;
const rs_partition_mask_count : u32 = 0x3FFFFFFFu;
var<private> kr : array<u32, rs_scatter_block_rows>;
var<private> pv : array<u32, rs_scatter_block_rows>;
fn fill_kv_even(wid: u32, lid: u32) {
let subgroup_id = lid / histogram_sg_size;
let subgroup_invoc_id = lid - subgroup_id * histogram_sg_size;
let subgroup_keyvals = rs_scatter_block_rows * histogram_sg_size;
let rs_block_keyvals: u32 = rs_histogram_block_rows * histogram_wg_size;
let kv_in_offset = wid * rs_block_keyvals + subgroup_id * subgroup_keyvals + subgroup_invoc_id;
for (var i = 0u; i < rs_histogram_block_rows; i++) {
let pos = kv_in_offset + i * histogram_sg_size;
kv[i] = keys[pos];
}
for (var i = 0u; i < rs_histogram_block_rows; i++) {
let pos = kv_in_offset + i * histogram_sg_size;
pv[i] = payload_a[pos];
}
}
fn fill_kv_odd(wid: u32, lid: u32) {
let subgroup_id = lid / histogram_sg_size;
let subgroup_invoc_id = lid - subgroup_id * histogram_sg_size;
let subgroup_keyvals = rs_scatter_block_rows * histogram_sg_size;
let rs_block_keyvals: u32 = rs_histogram_block_rows * histogram_wg_size;
let kv_in_offset = wid * rs_block_keyvals + subgroup_id * subgroup_keyvals + subgroup_invoc_id;
for (var i = 0u; i < rs_histogram_block_rows; i++) {
let pos = kv_in_offset + i * histogram_sg_size;
kv[i] = keys_b[pos];
}
for (var i = 0u; i < rs_histogram_block_rows; i++) {
let pos = kv_in_offset + i * histogram_sg_size;
pv[i] = payload_b[pos];
}
}
fn scatter(pass_: u32, lid: vec3<u32>, gid: vec3<u32>, wid: vec3<u32>, nwg: vec3<u32>, partition_status_invalid: u32, partition_status_reduction: u32, partition_status_prefix: u32) {
let partition_mask_invalid = partition_status_invalid << 30u;
let partition_mask_reduction = partition_status_reduction << 30u;
let partition_mask_prefix = partition_status_prefix << 30u;
// kv_filling is done in the scatter_even and scatter_odd functions to account for front and backbuffer switch
// in the reference there is a nulling of the smmem here, was moved to line 251 as smem is used in the code until then
// The following implements conceptually the same as the
// Emulate a "match" operation with broadcasts for small subgroup sizes (line 665 ff in scatter.glsl)
// The difference however is, that instead of using subrgoupBroadcast each thread stores
// its current number in the smem at lid.x, and then looks up their neighbouring values of the subgroup
let subgroup_id = lid.x / histogram_sg_size;
let subgroup_offset = subgroup_id * histogram_sg_size;
let subgroup_tid = lid.x - subgroup_offset;
let subgroup_count = {scatter_wg_size}u / histogram_sg_size;
for (var i = 0u; i < rs_scatter_block_rows; i++) {
let u_val = bitcast<u32>(kv[i]);
let digit = extractBits(u_val, pass_ * rs_radix_log2, rs_radix_log2);
atomicStore(&smem[lid.x], digit);
var count = 0u;
var rank = 0u;
for (var j = 0u; j < histogram_sg_size; j++) {
if atomicLoad(&smem[subgroup_offset + j]) == digit {
count += 1u;
if j <= subgroup_tid {
rank += 1u;
}
}
}
kr[i] = (count << 16u) | rank;
}
zero_smem(lid.x); // now zeroing the smmem as we are now accumulating the histogram there
workgroupBarrier();
// The final histogram is stored in the smem buffer
for (var i = 0u; i < subgroup_count; i++) {
if subgroup_id == i {
for (var j = 0u; j < rs_scatter_block_rows; j++) {
let v = bitcast<u32>(kv[j]);
let digit = extractBits(v, pass_ * rs_radix_log2, rs_radix_log2);
let prev = histogram_load(digit);
let rank = kr[j] & 0xFFFFu;
let count = kr[j] >> 16u;
kr[j] = prev + rank;
if rank == count {
histogram_store(digit, (prev + count));
}
// TODO: check if the barrier here is needed
}
}
workgroupBarrier();
}
// kr filling is now done and contains the total offset for each value to be able to
// move the values into order without having any collisions
// we do not check for single work groups (is currently not assumed to occur very often)
let partition_offset = lid.x + partitions_base_offset(); // is correct, the partitions pointer does not change
let partition_base = wid.x * rs_radix_size;
if wid.x == 0u {
// special treating for the first workgroup as the data might be read back by later workgroups
// corresponds to rs_first_prefix_store
let hist_offset = pass_ * rs_radix_size + lid.x;
if lid.x < rs_radix_size {
// let exc = histograms[hist_offset];
let exc = atomicLoad(&histograms[hist_offset]);
let red = histogram_load(lid.x);// scatter_smem[rs_keyval_size + lid.x];
scatter_smem[lid.x] = exc;
let inc = exc + red;
atomicStore(&histograms[partition_offset], inc | partition_mask_prefix);
}
}
else {
// standard case for the "inbetween" workgroups
// rs_reduction_store, only for inbetween workgroups
if lid.x < rs_radix_size && wid.x < nwg.x - 1u {
let red = histogram_load(lid.x);
atomicStore(&histograms[partition_offset + partition_base], red | partition_mask_reduction);
}
// rs_loopback_store
if lid.x < rs_radix_size {
var partition_base_prev = partition_base - rs_radix_size;
var exc = 0u;
// Note: Each workgroup invocation can proceed independently.
// Subgroups and workgroups do NOT have to coordinate.
while true {
//let prev = atomicLoad(&histograms[partition_offset]);// histograms[partition_offset + partition_base_prev];
let prev = atomicLoad(&histograms[partition_base_prev + partition_offset]);// histograms[partition_offset + partition_base_prev];
if (prev & rs_partition_mask_status) == partition_mask_invalid {
continue;
}
exc += prev & rs_partition_mask_count;
if (prev & rs_partition_mask_status) != partition_mask_prefix {
// continue accumulating reduction
partition_base_prev -= rs_radix_size;
continue;
}
// otherwise save the exclusive scan and atomically transform the
// reduction into an inclusive prefix status math: reduction + 1 = prefix
scatter_smem[lid.x] = exc;
if wid.x < nwg.x - 1u { // only store when inbetween, skip for last workgrup
atomicAdd(&histograms[partition_offset + partition_base], exc | (1u << 30u));
}
break;
}
}
}
// special case for last workgroup is also done in the "inbetween" case
// compute exclusive prefix scan of histogram
// corresponds to rs_prefix
// TODO make sure that the data is put into smem
prefix_reduce_smem(lid.x);
workgroupBarrier();
// convert keyval rank to local index, corresponds to rs_rank_to_local
for (var i = 0u; i < rs_scatter_block_rows; i++) {
let v = bitcast<u32>(kv[i]);
let digit = extractBits(v, pass_ * rs_radix_log2, rs_radix_log2);
let exc = histogram_load(digit);
let idx = exc + kr[i];
kr[i] |= (idx << 16u);
}
workgroupBarrier();
// reorder kv[] and kr[], corresponds to rs_reorder
let smem_reorder_offset = rs_radix_size;
let smem_base = smem_reorder_offset + lid.x; // as we are in smem, the radix_size offset is not needed
// keyvalues ----------------------------------------------
// store keyval to sorted location
for (var j = 0u; j < rs_scatter_block_rows; j++) {
let smem_idx = smem_reorder_offset + (kr[j] >> 16u) - 1u;
scatter_smem[smem_idx] = bitcast<u32>(kv[j]);
}
workgroupBarrier();
// Load keyval dword from sorted location
for (var j = 0u; j < rs_scatter_block_rows; j++) {
kv[j] = scatter_smem[smem_base + j * {scatter_wg_size}u];
}
workgroupBarrier();
// payload ----------------------------------------------
// store payload to sorted location
for (var j = 0u; j < rs_scatter_block_rows; j++) {
let smem_idx = smem_reorder_offset + (kr[j] >> 16u) - 1u;
scatter_smem[smem_idx] = pv[j];
}
workgroupBarrier();
// Load payload dword from sorted location
for (var j = 0u; j < rs_scatter_block_rows; j++) {
pv[j] = scatter_smem[smem_base + j * {scatter_wg_size}u];
}
workgroupBarrier();
// store the digit-index to sorted location
for (var i = 0u; i < rs_scatter_block_rows; i++) {
let smem_idx = smem_reorder_offset + (kr[i] >> 16u) - 1u;
scatter_smem[smem_idx] = kr[i];
}
workgroupBarrier();
// Load kr[] from sorted location -- we only need the rank
for (var i = 0u; i < rs_scatter_block_rows; i++) {
kr[i] = scatter_smem[smem_base + i * {scatter_wg_size}u] & 0xFFFFu;
}
// convert local index to a global index, corresponds to rs_local_to_global
for (var i = 0u; i < rs_scatter_block_rows; i++) {
let v = bitcast<u32>(kv[i]);
let digit = extractBits(v, pass_ * rs_radix_log2, rs_radix_log2);
let exc = scatter_smem[digit];
kr[i] += exc - 1u;
}
// the storing is done in the scatter_even and scatter_odd functions as the front and back buffer changes
}
@compute @workgroup_size({scatter_wg_size})
fn scatter_even(@builtin(workgroup_id) wid: vec3<u32>, @builtin(local_invocation_id) lid: vec3<u32>, @builtin(global_invocation_id) gid: vec3<u32>, @builtin(num_workgroups) nwg: vec3<u32>) {
if gid.x == 0u {
infos.odd_pass = (infos.odd_pass + 1u) % 2u; // for this to work correctly the odd_pass has to start 1
}
let cur_pass = infos.even_pass * 2u;
// load from keys, store to keys_b
fill_kv_even(wid.x, lid.x);
let partition_status_invalid = 0u;
let partition_status_reduction = 1u;
let partition_status_prefix = 2u;
scatter(cur_pass, lid, gid, wid, nwg, partition_status_invalid, partition_status_reduction, partition_status_prefix);
// store keyvals to their new locations, corresponds to rs_store
for (var i = 0u; i < rs_scatter_block_rows; i++) {
keys_b[kr[i]] = kv[i];
}
for (var i = 0u; i < rs_scatter_block_rows; i++) {
payload_b[kr[i]] = pv[i];
}
}
@compute @workgroup_size({scatter_wg_size})
fn scatter_odd(@builtin(workgroup_id) wid: vec3<u32>, @builtin(local_invocation_id) lid: vec3<u32>, @builtin(global_invocation_id) gid: vec3<u32>, @builtin(num_workgroups) nwg: vec3<u32>) {
if gid.x == 0u {
infos.even_pass = (infos.even_pass + 1u) % 2u; // for this to work correctly the even_pass has to start at 0
}
let cur_pass = infos.odd_pass * 2u + 1u;
// load from keys_b, store to keys
fill_kv_odd(wid.x, lid.x);
let partition_status_invalid = 2u;
let partition_status_reduction = 3u;
let partition_status_prefix = 0u;
scatter(cur_pass, lid, gid, wid, nwg, partition_status_invalid, partition_status_reduction, partition_status_prefix);
// store keyvals to their new locations, corresponds to rs_store
for (var i = 0u; i < rs_scatter_block_rows; i++) {
keys[kr[i]] = kv[i];
}
for (var i = 0u; i < rs_scatter_block_rows; i++) {
payload_a[kr[i]] = pv[i];
}
// the indirect buffer is reset after scattering via write buffer, see record_scatter_indirect for details
}