-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathrvvm.c
821 lines (735 loc) · 26.6 KB
/
rvvm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
/*
rvvm.c - RISC-V Virtual Machine
Copyright (C) 2021 LekKit <github.com/LekKit>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "rvvm.h"
#include "riscv_hart.h"
#include "riscv_mmu.h"
#include "riscv_cpu.h"
#include "vector.h"
#include "utils.h"
#include "mem_ops.h"
#include "threading.h"
#include "spinlock.h"
static spinlock_t global_lock = SPINLOCK_INIT;
static vector_t(rvvm_machine_t*) global_machines = {0};
static cond_var_t builtin_eventloop_cond;
static thread_handle_t builtin_eventloop_thread;
static bool builtin_eventloop_enabled = true;
#ifdef USE_FDT
static void rvvm_init_fdt(rvvm_machine_t* machine)
{
machine->fdt = fdt_node_create(NULL);
fdt_node_add_prop_u32(machine->fdt, "#address-cells", 2);
fdt_node_add_prop_u32(machine->fdt, "#size-cells", 2);
fdt_node_add_prop_str(machine->fdt, "compatible", "RVVM v"RVVM_VERSION);
fdt_node_add_prop_str(machine->fdt, "model", "RVVM v"RVVM_VERSION);
struct fdt_node* chosen = fdt_node_create("chosen");
uint8_t rng_buffer[64] = {0};
rvvm_randombytes(rng_buffer, sizeof(rng_buffer));
fdt_node_add_prop(chosen, "rng-seed", rng_buffer, sizeof(rng_buffer));
fdt_node_add_child(machine->fdt, chosen);
struct fdt_node* memory = fdt_node_create_reg("memory", machine->mem.begin);
fdt_node_add_prop_str(memory, "device_type", "memory");
fdt_node_add_prop_reg(memory, "reg", machine->mem.begin, machine->mem.size);
fdt_node_add_child(machine->fdt, memory);
struct fdt_node* cpus = fdt_node_create("cpus");
fdt_node_add_prop_u32(cpus, "#address-cells", 1);
fdt_node_add_prop_u32(cpus, "#size-cells", 0);
fdt_node_add_prop_u32(cpus, "timebase-frequency", 10000000);
struct fdt_node* cpu_map = fdt_node_create("cpu-map");
struct fdt_node* cluster = fdt_node_create("cluster0");
// Attach all the nodes to the root node before getting phandles
fdt_node_add_child(machine->fdt, cpus);
vector_foreach(machine->harts, i) {
struct fdt_node* cpu = fdt_node_create_reg("cpu", i);
fdt_node_add_prop_str(cpu, "device_type", "cpu");
fdt_node_add_prop_u32(cpu, "reg", i);
fdt_node_add_prop(cpu, "compatible", "rvvm\0riscv\0", 11);
fdt_node_add_prop_u32(cpu, "clock-frequency", 3000000000);
#ifdef USE_RV64
if (vector_at(machine->harts, i)->rv64) {
#ifdef USE_FPU
fdt_node_add_prop_str(cpu, "riscv,isa", "rv64imafdcsu");
#else
fdt_node_add_prop_str(cpu, "riscv,isa", "rv64imacsu");
#endif
fdt_node_add_prop_str(cpu, "mmu-type", "riscv,sv39");
} else {
#endif
#ifdef USE_FPU
fdt_node_add_prop_str(cpu, "riscv,isa", "rv32imafdcsu");
#else
fdt_node_add_prop_str(cpu, "riscv,isa", "rv32imacsu");
#endif
fdt_node_add_prop_str(cpu, "mmu-type", "riscv,sv32");
#ifdef USE_RV64
}
#endif
fdt_node_add_prop_str(cpu, "status", "okay");
struct fdt_node* clic = fdt_node_create("interrupt-controller");
fdt_node_add_prop_u32(clic, "#interrupt-cells", 1);
fdt_node_add_prop(clic, "interrupt-controller", NULL, 0);
fdt_node_add_prop_str(clic, "compatible", "riscv,cpu-intc");
fdt_node_add_child(cpu, clic);
fdt_node_add_child(cpus, cpu);
char core_name[32] = "core";
int_to_str_dec(core_name + 4, 20, i);
struct fdt_node* core = fdt_node_create(core_name);
fdt_node_add_prop_u32(core, "cpu", fdt_node_get_phandle(cpu));
fdt_node_add_child(cluster, core);
}
fdt_node_add_child(cpu_map, cluster);
fdt_node_add_child(cpus, cpu_map);
struct fdt_node* soc = fdt_node_create("soc");
fdt_node_add_prop_u32(soc, "#address-cells", 2);
fdt_node_add_prop_u32(soc, "#size-cells", 2);
fdt_node_add_prop_str(soc, "compatible", "simple-bus");
fdt_node_add_prop(soc, "ranges", NULL, 0);
fdt_node_add_child(machine->fdt, soc);
machine->fdt_soc = soc;
}
static rvvm_addr_t rvvm_gen_dtb(rvvm_machine_t* machine)
{
if (machine->cmdline) {
struct fdt_node* chosen = fdt_node_find(machine->fdt, "chosen");
fdt_node_add_prop_str(chosen, "bootargs", machine->cmdline);
free(machine->cmdline);
machine->cmdline = NULL;
}
size_t dtb_size = fdt_size(machine->fdt);
paddr_t dtb_off = machine->mem.size > dtb_size ? machine->mem.size - dtb_size : 0;
dtb_size = fdt_serialize(machine->fdt, machine->mem.data + dtb_off, machine->mem.size - dtb_off, 0);
if (dtb_size) {
rvvm_info("Generated DTB at 0x%08"PRIxXLEN", size %u", machine->mem.begin + dtb_off, (uint32_t)dtb_size);
} else {
rvvm_error("Generated DTB does not fit in RAM!");
}
return machine->mem.begin + dtb_off;
}
#endif
#define RVVM_POWER_OFF 0
#define RVVM_POWER_ON 1
#define RVVM_POWER_RESET 2
static bool rvvm_reset_machine_state(rvvm_machine_t* machine)
{
atomic_store_uint32(&machine->power_state, RVVM_POWER_ON);
// Call reset callback
if (machine->on_reset && !machine->on_reset(machine, machine->reset_data, true)) {
return false;
}
// Reset devices
vector_foreach(machine->mmio, i) {
rvvm_mmio_dev_t *dev = &vector_at(machine->mmio, i);
if (dev->type && dev->type->reset) dev->type->reset(dev);
}
// Load bootrom, kernel, dtb into RAM if needed
if (machine->bootrom_file) {
rvread(machine->bootrom_file, machine->mem.data, machine->mem.size, 0);
if (machine->mem.size >= 4 && read_uint32_le(machine->mem.data) == 0x464c457F) {
rvvm_error("ELF firmware images are not (yet) supported");
}
}
if (machine->kernel_file) {
size_t kernel_offset = machine->rv64 ? 0x200000 : 0x400000;
size_t kernel_size = machine->mem.size > kernel_offset ? machine->mem.size - kernel_offset : 0;
rvread(machine->kernel_file, machine->mem.data + kernel_offset, kernel_size, 0);
if (kernel_size >= 4 && read_uint32_le(machine->mem.data + kernel_offset) == 0x464c457F) {
rvvm_error("ELF kernel images are not (yet) supported."
"\nI hope you aren't running QEMU U-Boot, are you?");
}
}
rvvm_addr_t dtb_addr = machine->dtb_addr;
if (machine->dtb_file) {
size_t dtb_size = rvfilesize(machine->dtb_file);
size_t dtb_offset = machine->mem.size > dtb_size ? machine->mem.size - dtb_size : 0;
dtb_addr = machine->mem.begin + dtb_offset;
rvread(machine->dtb_file, machine->mem.data + dtb_offset, machine->mem.size - dtb_offset, 0);
}
#ifdef USE_FDT
if (dtb_addr == 0) {
// If no DTB was supplied, generate it
dtb_addr = rvvm_gen_dtb(machine);
}
#endif
// Reset CPUs
rvtimer_init(&machine->timer, 10000000); // 10 MHz timer
vector_foreach(machine->harts, i) {
rvvm_hart_t* vm = vector_at(machine->harts, i);
vm->timer = machine->timer;
// a0 register & mhartid csr contain hart ID
vm->csr.hartid = i;
vm->registers[REGISTER_X10] = i;
// a1 register contains FDT address
vm->registers[REGISTER_X11] = dtb_addr;
// Boot from ram base addr by default
vm->registers[REGISTER_PC] = vm->mem.begin;
riscv_switch_priv(vm, PRIVILEGE_MACHINE);
riscv_jit_flush_cache(vm);
}
return true;
}
static void* builtin_eventloop(void* arg)
{
rvvm_machine_t* machine;
rvvm_mmio_dev_t* dev;
uint32_t power_state;
// The eventloop runs while its enabled/ran manually,
// and there are any running machines
while (builtin_eventloop_enabled || arg) {
spin_lock_slow(&global_lock);
if (vector_size(global_machines) == 0) {
thread_detach(builtin_eventloop_thread);
builtin_eventloop_thread = NULL;
condvar_free(builtin_eventloop_cond);
builtin_eventloop_cond = NULL;
vector_free(global_machines);
spin_unlock(&global_lock);
break;
}
vector_foreach(global_machines, m) {
machine = vector_at(global_machines, m);
power_state = atomic_load_uint32(&machine->power_state);
if (power_state != RVVM_POWER_ON) {
// The machine was shut down or reset
vector_foreach(machine->harts, i) {
riscv_hart_pause(vector_at(machine->harts, i));
}
// Call reset/poweroff handler
if (power_state == RVVM_POWER_RESET && rvvm_reset_machine_state(machine)) {
rvvm_info("Machine %p resetting", machine);
vector_foreach(machine->harts, i) {
riscv_hart_spawn(vector_at(machine->harts, i));
}
} else {
if (machine->on_reset) {
machine->on_reset(machine, machine->reset_data, false);
}
rvvm_info("Machine %p shutting down", machine);
atomic_store_uint32(&machine->running, false);
vector_erase(global_machines, m);
break;
}
}
vector_foreach(machine->harts, i) {
rvvm_hart_t* vm = vector_at(machine->harts, i);
// Wake hart thread to check timer interrupt.
if ((vm->csr.ie & INTERRUPT_MTIMER) && rvtimer_pending(&vm->timer)) {
riscv_hart_check_timer(vector_at(machine->harts, i));
}
}
vector_foreach(machine->mmio, i) {
dev = &vector_at(machine->mmio, i);
if (dev->type && dev->type->update) {
// Update device
dev->type->update(dev);
}
}
}
spin_unlock(&global_lock);
condvar_wait(builtin_eventloop_cond, 10);
}
return arg;
}
PUBLIC bool rvvm_mmio_none(rvvm_mmio_dev_t* dev, void* dest, size_t offset, uint8_t size)
{
UNUSED(dev);
UNUSED(offset);
memset(dest, 0, size);
return true;
}
PUBLIC rvvm_machine_t* rvvm_create_machine(rvvm_addr_t mem_base, size_t mem_size, size_t hart_count, bool rv64)
{
rvvm_machine_t* machine;
rvvm_hart_t* vm;
#ifndef USE_RV64
if (rv64) {
rvvm_error("RV64 is disabled in this RVVM build");
return NULL;
}
#endif
if (hart_count == 0) {
rvvm_error("Creating machine with no harts at all... What are you even??");
return NULL;
}
if (hart_count > 1024) {
rvvm_error("Invalid machine core count");
return NULL;
}
if (!rv64 && mem_size > (1U << 30)) {
// Workaround for SBI/Linux hangs on incorrect machine config
rvvm_warn("Creating RV32 machine with >1G of RAM is likely to break, fixing");
mem_size = 1U << 30;
}
machine = safe_new_obj(rvvm_machine_t);
if (!riscv_init_ram(&machine->mem, mem_base, mem_size)) {
free(machine);
return NULL;
}
vector_init(machine->harts);
vector_init(machine->mmio);
for (size_t i=0; i<hart_count; ++i) {
vm = safe_new_obj(rvvm_hart_t);
vector_push_back(machine->harts, vm);
riscv_hart_init(vm, rv64);
vm->machine = machine;
vm->mem = machine->mem;
}
machine->power_state = RVVM_POWER_OFF;
machine->rv64 = rv64;
#ifdef USE_FDT
rvvm_init_fdt(machine);
#endif
riscv_jit_init_memtracking(machine);
return machine;
}
PUBLIC bool rvvm_write_ram(rvvm_machine_t* machine, rvvm_addr_t dest, const void* src, size_t size)
{
if (dest < machine->mem.begin
|| (dest - machine->mem.begin + size) > machine->mem.size) return false;
memcpy(machine->mem.data + (dest - machine->mem.begin), src, size);
riscv_jit_mark_dirty_mem(machine, dest, size);
return true;
}
PUBLIC bool rvvm_read_ram(rvvm_machine_t* machine, void* dest, rvvm_addr_t src, size_t size)
{
if (src < machine->mem.begin
|| (src - machine->mem.begin + size) > machine->mem.size) return false;
memcpy(dest, machine->mem.data + (src - machine->mem.begin), size);
return true;
}
PUBLIC void* rvvm_get_dma_ptr(rvvm_machine_t* machine, rvvm_addr_t addr, size_t size)
{
if (addr < machine->mem.begin
|| (addr - machine->mem.begin + size) > machine->mem.size) return NULL;
riscv_jit_mark_dirty_mem(machine, addr, size);
return machine->mem.data + (addr - machine->mem.begin);
}
PUBLIC void rvvm_flush_icache(rvvm_machine_t* machine, rvvm_addr_t addr, size_t size)
{
// WIP, issue a total cache flush on all harts
// Needs improvements in RVJIT
UNUSED(addr);
UNUSED(size);
spin_lock_slow(&global_lock);
vector_foreach(machine->harts, i) {
riscv_jit_flush_cache(vector_at(machine->harts, i));
}
spin_unlock(&global_lock);
}
PUBLIC plic_ctx_t* rvvm_get_plic(rvvm_machine_t* machine)
{
return machine->plic;
}
PUBLIC void rvvm_set_plic(rvvm_machine_t* machine, plic_ctx_t* plic)
{
if (plic) machine->plic = plic;
}
PUBLIC pci_bus_t* rvvm_get_pci_bus(rvvm_machine_t* machine)
{
return machine->pci_bus;
}
PUBLIC void rvvm_set_pci_bus(rvvm_machine_t* machine, pci_bus_t* pci_bus)
{
if (pci_bus) machine->pci_bus = pci_bus;
}
PUBLIC i2c_bus_t* rvvm_get_i2c_bus(rvvm_machine_t* machine)
{
return machine->i2c_bus;
}
PUBLIC void rvvm_set_i2c_bus(rvvm_machine_t* machine, i2c_bus_t* i2c_bus)
{
if (i2c_bus) machine->i2c_bus = i2c_bus;
}
PUBLIC struct fdt_node* rvvm_get_fdt_root(rvvm_machine_t* machine)
{
#ifdef USE_FDT
return machine->fdt;
#else
UNUSED(machine);
return NULL;
#endif
}
PUBLIC struct fdt_node* rvvm_get_fdt_soc(rvvm_machine_t* machine)
{
#ifdef USE_FDT
return machine->fdt_soc;
#else
UNUSED(machine);
return NULL;
#endif
}
PUBLIC void rvvm_set_dtb_addr(rvvm_machine_t* machine, rvvm_addr_t dtb_addr)
{
machine->dtb_addr = dtb_addr;
}
PUBLIC void rvvm_cmdline_set(rvvm_machine_t* machine, const char* str)
{
#ifdef USE_FDT
free(machine->cmdline);
machine->cmdline = NULL;
rvvm_cmdline_append(machine, str);
#else
UNUSED(machine);
UNUSED(str);
#endif
}
PUBLIC void rvvm_cmdline_append(rvvm_machine_t* machine, const char* str)
{
#ifdef USE_FDT
size_t cmd_len = machine->cmdline ? strlen(machine->cmdline) : 0;
size_t append_len = strlen(str);
char* tmp = safe_calloc(sizeof(char), cmd_len + append_len + 2);
if (machine->cmdline) memcpy(tmp, machine->cmdline, cmd_len);
memcpy(tmp + cmd_len, str, append_len);
tmp[cmd_len + append_len] = ' ';
tmp[cmd_len + append_len + 1] = 0;
free(machine->cmdline);
machine->cmdline = tmp;
#else
UNUSED(machine);
UNUSED(str);
#endif
}
PUBLIC void rvvm_set_reset_handler(rvvm_machine_t* machine, rvvm_reset_handler_t handler, void* data)
{
machine->on_reset = handler;
machine->reset_data = data;
}
static bool file_reopen_check_size(rvfile_t** dest, const char* path, size_t size)
{
rvclose(*dest);
if (path) {
*dest = rvopen(path, 0);
if (*dest == NULL) {
rvvm_error("Could not open file %s", path);
return false;
}
if (rvfilesize(*dest) > size) {
rvvm_error("File %s doesn't fit in RAM", path);
rvclose(*dest);
*dest = NULL;
return false;
}
} else {
*dest = NULL;
}
return true;
}
PUBLIC bool rvvm_load_bootrom(rvvm_machine_t* machine, const char* path)
{
return file_reopen_check_size(&machine->bootrom_file, path, machine->mem.size);
}
PUBLIC bool rvvm_load_kernel(rvvm_machine_t* machine, const char* path)
{
size_t kernel_offset = machine->rv64 ? 0x200000 : 0x400000;
size_t kernel_size = machine->mem.size > kernel_offset ? machine->mem.size - kernel_offset : 0;
return file_reopen_check_size(&machine->kernel_file, path, kernel_size);
}
PUBLIC bool rvvm_load_dtb(rvvm_machine_t* machine, const char* path)
{
return file_reopen_check_size(&machine->dtb_file, path, machine->mem.size >> 1);
}
PUBLIC bool rvvm_dump_dtb(rvvm_machine_t* machine, const char* path)
{
#ifdef USE_FDT
rvfile_t* file = rvopen(path, RVFILE_RW | RVFILE_CREAT | RVFILE_TRUNC);
if (file) {
size_t size = fdt_size(rvvm_get_fdt_root(machine));
void* buffer = safe_calloc(size, 1);
size = fdt_serialize(rvvm_get_fdt_root(machine), buffer, size, 0);
rvwrite(file, buffer, size, 0);
rvclose(file);
return true;
}
#else
UNUSED(machine);
UNUSED(path);
rvvm_error("This build doesn't support FDT generation");
#endif
return false;
}
PUBLIC bool rvvm_start_machine(rvvm_machine_t* machine)
{
if (atomic_swap_uint32(&machine->running, true)) {
return false;
}
spin_lock_slow(&global_lock);
if (!rvvm_machine_powered_on(machine)) {
rvvm_reset_machine_state(machine);
}
vector_foreach(machine->harts, i) {
riscv_hart_spawn(vector_at(machine->harts, i));
}
vector_push_back(global_machines, machine);
if (builtin_eventloop_enabled && builtin_eventloop_thread == NULL) {
builtin_eventloop_cond = condvar_create();
builtin_eventloop_thread = thread_create(builtin_eventloop, NULL);
}
spin_unlock(&global_lock);
return true;
}
PUBLIC bool rvvm_pause_machine(rvvm_machine_t* machine)
{
if (!atomic_swap_uint32(&machine->running, false)) {
return false;
}
spin_lock_slow(&global_lock);
vector_foreach(machine->harts, i) {
riscv_hart_pause(vector_at(machine->harts, i));
}
vector_foreach(global_machines, i) {
if (vector_at(global_machines, i) == machine) {
vector_erase(global_machines, i);
break;
}
}
spin_unlock(&global_lock);
return true;
}
PUBLIC void rvvm_reset_machine(rvvm_machine_t* machine, bool reset)
{
// Handled by eventloop
atomic_store_uint32(&machine->power_state, reset ? RVVM_POWER_RESET : RVVM_POWER_OFF);
// For singlethreaded VMs, returns from riscv_hart_run()
if (vector_size(machine->harts) == 1) {
riscv_hart_queue_pause(vector_at(machine->harts, 0));
}
condvar_wake(builtin_eventloop_cond);
}
PUBLIC bool rvvm_machine_powered_on(rvvm_machine_t* machine)
{
return atomic_load_uint32(&machine->power_state) != RVVM_POWER_OFF;
}
static void rvvm_cleanup_mmio(rvvm_mmio_dev_t* dev)
{
rvvm_info("Removing MMIO device \"%s\"", dev->type ? dev->type->name : "null");
// Either device implements it's own cleanup routine,
// or we free it's data buffer
if (dev->type && dev->type->remove)
dev->type->remove(dev);
else
free(dev->data);
}
PUBLIC void rvvm_free_machine(rvvm_machine_t* machine)
{
rvvm_pause_machine(machine);
// Clean up devices in reversed order, something may reference older devices
vector_foreach_back(machine->mmio, i) {
rvvm_cleanup_mmio(&vector_at(machine->mmio, i));
}
vector_foreach(machine->harts, i) {
riscv_hart_free(vector_at(machine->harts, i));
free(vector_at(machine->harts, i));
}
vector_free(machine->harts);
vector_free(machine->mmio);
riscv_free_ram(&machine->mem);
rvclose(machine->bootrom_file);
rvclose(machine->kernel_file);
rvclose(machine->dtb_file);
#ifdef USE_FDT
fdt_node_free(machine->fdt);
free(machine->cmdline);
#endif
free(machine);
}
PUBLIC rvvm_mmio_dev_t* rvvm_get_mmio(rvvm_machine_t *machine, rvvm_mmio_handle_t handle)
{
if (handle < 0 || (size_t)handle >= vector_size(machine->mmio)) {
return NULL;
}
return &vector_at(machine->mmio, (size_t)handle);
}
// Regions of size 0 are ignored (those are non-IO placeholders)
PUBLIC rvvm_addr_t rvvm_mmio_zone_auto(rvvm_machine_t* machine, rvvm_addr_t addr, size_t size)
{
for (size_t attempt=0; attempt<64; ++attempt) {
if (size && addr >= machine->mem.begin && (addr + size) <= (machine->mem.begin + machine->mem.size)) {
addr = machine->mem.begin + machine->mem.size;
continue;
}
vector_foreach(machine->mmio, i) {
struct rvvm_mmio_dev_t *dev = &vector_at(machine->mmio, i);
if (size && addr >= dev->addr && (addr + size) <= (dev->addr + dev->size)) {
addr = dev->addr + dev->size;
continue;
}
}
return addr;
}
rvvm_warn("Cannot find free MMIO range!");
return addr + 0x1000;
}
PUBLIC rvvm_mmio_handle_t rvvm_attach_mmio(rvvm_machine_t* machine, const rvvm_mmio_dev_t* mmio)
{
rvvm_mmio_dev_t dev = *mmio;
dev.machine = machine;
if (mmio->min_op_size > mmio->max_op_size || mmio->max_op_size > 8) {
rvvm_warn("MMIO device \"%s\" has invalid op sizes: min %u, max %u",
mmio->type ? mmio->type->name : "null", mmio->min_op_size, mmio->max_op_size);
rvvm_cleanup_mmio(&dev);
return RVVM_INVALID_MMIO;
}
if (rvvm_mmio_zone_auto(machine, mmio->addr, mmio->size) != mmio->addr) {
rvvm_warn("Cannot attach MMIO device \"%s\" to occupied region 0x%08"PRIx64"",
mmio->type ? mmio->type->name : "null", mmio->addr);
rvvm_cleanup_mmio(&dev);
return RVVM_INVALID_MMIO;
}
bool was_running = rvvm_pause_machine(machine);
// Normalize access properties: Power of two, default 1 - 8 bytes
dev.min_op_size = dev.min_op_size ? bit_next_pow2(dev.min_op_size) : 1;
dev.max_op_size = dev.max_op_size ? bit_next_pow2(dev.max_op_size) : 8;
vector_push_back(machine->mmio, dev);
rvvm_mmio_handle_t ret = vector_size(machine->mmio) - 1;
rvvm_info("Attached MMIO device at 0x%08"PRIx64", type \"%s\"",
dev.addr, dev.type ? dev.type->name : "null");
if (was_running) rvvm_start_machine(machine);
return ret;
}
PUBLIC void rvvm_detach_mmio(rvvm_machine_t* machine, rvvm_addr_t mmio_addr, bool cleanup)
{
bool was_running = rvvm_pause_machine(machine);
vector_foreach(machine->mmio, i) {
struct rvvm_mmio_dev_t *dev = &vector_at(machine->mmio, i);
if (mmio_addr >= dev->addr
&& mmio_addr < (dev->addr + dev->size)) {
/* do not remove the machine from vector so that the handles
* remain valid */
dev->size = 0;
if (cleanup) rvvm_cleanup_mmio(dev);
}
}
if (was_running) rvvm_start_machine(machine);
}
PUBLIC void rvvm_enable_builtin_eventloop(bool enabled)
{
thread_handle_t stop_thread = NULL;
spin_lock_slow(&global_lock);
if (builtin_eventloop_enabled != enabled) {
builtin_eventloop_enabled = enabled;
if (!enabled) {
condvar_wake(builtin_eventloop_cond);
stop_thread = builtin_eventloop_thread;
builtin_eventloop_thread = NULL;
} else if (builtin_eventloop_thread == NULL) {
builtin_eventloop_cond = condvar_create();
builtin_eventloop_thread = thread_create(builtin_eventloop, NULL);
}
}
spin_unlock(&global_lock);
if (stop_thread) {
thread_join(stop_thread);
}
}
PUBLIC void rvvm_run_eventloop()
{
rvvm_enable_builtin_eventloop(false);
builtin_eventloop_cond = condvar_create();
builtin_eventloop((void*)(size_t)1);
}
//
// Userland emulation API (WIP)
//
PUBLIC rvvm_machine_t* rvvm_create_userland(bool rv64)
{
rvvm_machine_t* machine = safe_new_obj(rvvm_machine_t);
// Bypass entire process memory except the NULL page
// RVVM expects mem.data to be non-NULL, let's leave that for now
machine->mem.begin = 0x1000;
machine->mem.size = (paddr_t)-0x1000ULL;
machine->mem.data = (void*)0x1000;
machine->rv64 = rv64;
// I don't know what time CSR frequency userspace expects...
rvtimer_init(&machine->timer, 1000000);
return machine;
}
PUBLIC rvvm_cpu_handle_t rvvm_create_user_thread(rvvm_machine_t* machine)
{
rvvm_hart_t* vm = safe_new_obj(rvvm_hart_t);
riscv_hart_init(vm, machine->rv64);
vm->machine = machine;
vm->mem = machine->mem;
riscv_switch_priv(vm, PRIVILEGE_MACHINE);
#ifdef USE_FPU
// Initialize FPU by writing to status CSR
maxlen_t mstatus = 0xA00000000 + (FS_INITIAL << 13);
riscv_csr_op(vm, 0x300, &mstatus, CSR_SWAP);
#endif
riscv_switch_priv(vm, PRIVILEGE_USER);
spin_lock_slow(&global_lock);
vector_push_back(machine->harts, vm);
spin_unlock(&global_lock);
return (rvvm_cpu_handle_t)vm;
}
PUBLIC void rvvm_free_user_thread(rvvm_cpu_handle_t cpu)
{
rvvm_hart_t* vm = (rvvm_hart_t*)cpu;
spin_lock_slow(&global_lock);
vector_foreach(vm->machine->harts, i) {
if (vector_at(vm->machine->harts, i) == vm) {
vector_erase(vm->machine->harts, i);
riscv_hart_free(vm);
free(vm);
spin_unlock(&global_lock);
return;
}
}
rvvm_fatal("Corrupted userland context!");
}
PUBLIC rvvm_addr_t rvvm_run_user_thread(rvvm_cpu_handle_t cpu)
{
return riscv_hart_run_userland((rvvm_hart_t*)cpu);
}
PUBLIC rvvm_addr_t rvvm_read_cpu_reg(rvvm_cpu_handle_t cpu, size_t reg_id)
{
rvvm_hart_t* vm = (rvvm_hart_t*)cpu;
if (reg_id < (RVVM_REGID_X0 + 32)) {
return vm->registers[reg_id - RVVM_REGID_X0];
#ifdef USE_FPU
} else if (reg_id < (RVVM_REGID_F0 + 32)) {
rvvm_addr_t ret;
memcpy(&ret, &vm->fpu_registers[reg_id - RVVM_REGID_F0], sizeof(ret));
return ret;
#endif
} else if (reg_id == RVVM_REGID_PC) {
return vm->registers[REGISTER_PC];
} else if (reg_id == RVVM_REGID_CAUSE) {
return vm->csr.cause[PRIVILEGE_USER];
} else if (reg_id == RVVM_REGID_TVAL) {
return vm->csr.tval[PRIVILEGE_USER];
} else {
rvvm_warn("Unknown register %d in rvvm_read_cpu_reg()!", (uint32_t)reg_id);
return 0;
}
}
PUBLIC void rvvm_write_cpu_reg(rvvm_cpu_handle_t cpu, size_t reg_id, rvvm_addr_t reg)
{
rvvm_hart_t* vm = (rvvm_hart_t*)cpu;
if (reg_id < (RVVM_REGID_X0 + 32)) {
vm->registers[reg_id - RVVM_REGID_X0] = reg;
#ifdef USE_FPU
} else if (reg_id < (RVVM_REGID_F0 + 32)) {
memcpy(&vm->fpu_registers[reg_id - RVVM_REGID_F0], ®, sizeof(reg));
#endif
} else if (reg_id == RVVM_REGID_PC) {
vm->registers[REGISTER_PC] = reg;
} else if (reg_id == RVVM_REGID_CAUSE) {
vm->csr.cause[PRIVILEGE_USER] = reg;
} else if (reg_id == RVVM_REGID_TVAL) {
vm->csr.tval[PRIVILEGE_USER] = reg;
} else {
rvvm_warn("Unknown register %d in rvvm_write_cpu_reg()!", (uint32_t)reg_id);
}
}