-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClasses.py
486 lines (402 loc) · 16.9 KB
/
Classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import time
from dataclasses import dataclass
import matplotlib.pyplot as plt
import numpy as np
import plotly.graph_objs as go
import scipy
# %% Definitive Classes
@dataclass
class Atom:
def __init__(self, sct, lmbds, m_uma):
self.h = 6.62607004e-34
self.scatEff = sct
self.lambdas = np.array(lmbds)
self.k = 2 * np.pi / self.lambdas[0]
self.m = m_uma * 1.6605402e-27
self.recoils = self.h / (self.m * self.lambdas)
self.directions = np.concatenate((np.eye(3), -np.eye(3)), 0)
Magnesium = Atom(sct=2e4, lmbds=[457e-9, 462e-9, 634e-9, 285e-9], m_uma=24.305)
Calcium = Atom(sct=3.1416e4, lmbds=[657.5e-9, 452.7e-9, 732.8, 422.8], m_uma=40.078)
class MonteCarlo:
def __init__(
self,
atom,
N=100,
timesteps=100,
deltaL=None,
sigmar=5e-4,
sigmav=0.81,
dt=20e-6,
Omega12=5e5,
Magnetic_gradient=np.array([5, 5, 5]),
waist=2e-3,
):
self.atom = atom
self.mag = 8.8e8 * Magnetic_gradient
self.Omega12 = Omega12
self.dt = dt
self.sigmar = sigmar
self.sigmav = sigmav
self.N = N
self.timesteps = timesteps
self.waist = waist
self.probcycle = 1 - np.exp(-self.dt * self.atom.scatEff)
self.directions = np.concatenate((np.eye(3), -np.eye(3)), 0)
self.deltaL = deltaL
self.mean_measure = [("module", None), ("mean", None)]
self.temperature_measure = [
("module", None),
("temperature", None),
("mean", None),
("multiply", 1e6),
]
self.reset()
def reset(self):
# self.insideMask=np.ones(self.N,dtype=bool)
# self.insideMaskMemory=np.ones((self.timesteps,self.N),dtype=bool)
self.X = np.random.normal(0, self.sigmar, (self.N, 3))
self.V = np.random.normal(0, self.sigmav, (self.N, 3))
self.memoryX = np.zeros((self.timesteps, self.N, 3))
self.memoryV = np.zeros((self.timesteps, self.N, 3))
self.T = 0
def changeReset(self, N, timesteps, dL):
self.deltaL = dL
self.N = N
self.timesteps = timesteps
self.reset()
def rdir2(self):
A = np.einsum("ij,ij,jk->ik", self.X, self.X, 1 - np.eye(3))
return np.concatenate((A, A), axis=1)
def kv(self):
return self.atom.k * np.einsum("ij,kj->ik", self.V, self.directions)
def bx(self):
return np.einsum("ij,kj,j->ik", self.X, self.directions, self.mag)
def rho22(self):
numerator = self.Omega12**2 * np.exp(-self.rdir2() / self.waist**2)
denominator = 2 * self.Omega12**2 * np.exp(-self.rdir2() / self.waist**2)
denominator += self.atom.scatEff**2
denominator += (self.deltaL[self.T] + self.kv() + self.bx()) ** 2
return numerator / denominator
def randomChoices(self):
probs = np.cumsum(self.rho22(), axis=1) + 1e-15
probs /= np.tile(probs[:, -1], (6, 1)).transpose()
choices = np.random.uniform(0, 1, self.N)
choices = np.tile(choices, (6, 1)).transpose()
choices -= probs
choices = choices > 0
return np.sum(choices, axis=1)
def RandomDirection(self):
alpha = np.random.uniform(0, 2 * np.pi, self.N)
beta = np.random.uniform(0, np.pi, self.N)
return np.array(
[np.sin(beta) * np.cos(alpha), np.sin(beta) * np.sin(alpha), np.cos(beta)]
).transpose()
def cycle(self):
d = self.randomChoices()
cyclehappens = np.random.choice(
a=[False, True], size=(self.N,), p=[1 - self.probcycle, self.probcycle]
)
# First 2 recoils
self.V += (
np.einsum("ij,i->ij", self.directions[d], cyclehappens)
* self.atom.recoils[0]
)
self.V += (
np.einsum("ij,i->ij", self.directions[d], cyclehappens)
* self.atom.recoils[1]
)
# Second 2 recoils
self.V += (
np.einsum("ij,i->ij", self.RandomDirection(), cyclehappens)
* self.atom.recoils[2]
)
self.V += (
np.einsum("ij,i->ij", self.RandomDirection(), cyclehappens)
* self.atom.recoils[3]
)
# This function describes the time evolution
def evolve(self, N, ts, dL):
# Here we set the parameteres and reset our distributions
self.changeReset(N, ts, dL)
# We are going to make time evolve for a given amount of timesteps
while self.T < self.timesteps:
# Here we record the postion and velocity of our system
self.memoryX[self.T] = self.X
self.memoryV[self.T] = self.V
# self.insideMaskMemory[self.T] = self.insideMask
# We will assume that the recoil process happens at half the timestep
self.X += self.V * self.dt / 2
# The recoils happen according to the semiclassical model
self.cycle()
# The trajectory evolves (Note that the biggest recoil is of 0.2 m/s which on average happens every 3 cycles)
# The total error in position using this method is error = ts*dt*0.2=T*0.2 or about 0.4mm
self.V += self.directions[-1] * 9.81 * self.dt
self.X += self.V * self.dt / 2
# self.insideMask &= (np.abs(self.X)<self.waist).all(axis=1)
# Here we make time evolve (used to keep track of deltaL)
self.T += 1
self.mask_inside = self.mask_in()
def mask_in(self):
out = np.abs(self.memoryX) > self.waist
out = out.any(axis=2)
out = out.cumsum(axis=0, dtype=bool)
return np.logical_not(out)
def efficiency(self):
return self.mask_in().mean(axis=1)
def derivative_efficiency(self, w=5):
diffeff = (self.efficiency()[:-1] - self.efficiency()[1:]) / self.dt
smooth_diffeff = np.convolve(diffeff, np.ones(w), "valid") / w
return smooth_diffeff
# Getting the measurables of the particles that have been inside the box at all times
def get(self, quantity, t=-1):
return getattr(self, "memory" + quantity)[:, self.mask_inside[t], :]
# Here we will need to pass a series of concatenated mesures and parameters
def observable(self, quantity, measures_params, t=-1):
result = self.get(quantity, t)
measures_params_get = [
(getattr(self, measure[0]), measure[1]) for measure in measures_params
]
for measure, param in measures_params_get:
result = measure(result, param)
return result
# First Layer to reduce dimensions
@staticmethod
def module(quantity, param): # Returns module over 3 dimensions
return np.linalg.norm(quantity, axis=2)
@staticmethod
def axis(quantity, param):
ax = {"x": 0, "y": 1, "z": 2}
return quantity[:, :, ax[param]]
@staticmethod
def maxaxis(quantity, param):
return quantity.max(axis=2)
@staticmethod
def minaxis(quantity, param):
return quantity.min(axis=2)
# Second layer to reduce particles
def temperature(self, quantity, param):
kb = 1.38e-23
return (self.atom.m * quantity**2) / (3 * kb)
@staticmethod
def mean(quantity, param):
return quantity.mean(axis=1)
@staticmethod
def std(quantity, param):
return quantity.std(axis=1)
@staticmethod
def quantile(quantity, param):
if quantity.size == 0:
return -1.0
return np.quantile(quantity, param, axis=1)
# Third layer to get particular times
@staticmethod
def timestep(quantity, param):
return quantity[param]
@staticmethod
def multiply(quantity, param):
return quantity * param
def Velocity(self):
return self.observable("V", self.mean_measure)
def Temperature(self):
return self.observable("V", self.temperature_measure)
# Optimization
# def heuristic_dL(self,measure_params_V=None,measure_params_X=None):
# if (measure_params_V,measure_params_X)==(None,None):
# measure_params_V=[('module',None),('mean',None)]
# measure_params_X=[('module',None),('mean',None)]
# heuristic = np.zeros(self.timesteps)
# for t in range(self.timesteps):
# heuristic[t]=self.atom.k * self.observable('V',measure_params_V + [('timestep',t)],t=t) + self.mag[0] * self.observable('X',measure_params_X + [('timestep',t)] ,t=t)
# return heuristic
def heuristic_dL(self, measure_params_V=None, measure_params_X=None):
if (measure_params_V, measure_params_X) == (None, None):
measure_params_V = [("module", None), ("mean", None)]
measure_params_X = [("module", None), ("mean", None)]
v = self.observable("V", measure_params_V)
x = self.observable("X", measure_params_X)
return self.atom.k * v + self.mag[0] * self.waist / 2
# %%General Plots
# Optimization
class Optimizer:
def __init__(self, monty_opt):
self.monty_opt = monty_opt
self.erase_memory()
# self.firstGuess()
def dic(self):
d = {
"method": self.method,
"Parameters": self.parameters,
"Efficiency": self.efficiency,
"Velocity": self.velocity,
"Temperature": self.temperature,
}
return d
def erase_memory(self):
self.method = []
self.parameters = []
self.efficiency = []
self.velocity = []
self.temperature = []
def firstGuess(self):
first_heuristic = (
np.linalg.norm(self.monty_opt.V, axis=1).mean() * self.monty_opt.atom.k
- self.monty_opt.mag[0] * self.monty_opt.waist
)
self.monty_opt.evolve(
N=self.monty_opt.N,
ts=self.monty_opt.timesteps,
dL=np.full(self.monty_opt.timesteps, first_heuristic),
)
self.method = ["constant"]
self.parameters = [first_heuristic]
self.efficiency = [self.monty_opt.efficiency()[-1]]
self.velocity = [self.monty_opt.Velocity()[-1]]
self.temperature = [self.monty_opt.Temperature()[-1]]
def reset(self):
self.erase_memory()
self.monty_opt.reset()
self.firstGuess()
@staticmethod
def linear_dL(x, dLi, dLf, T):
b = x < T
slope = (dLf - dLi) / T
return b * (dLi + slope * x) + (1 - b) * dLf
@staticmethod
def twostep_dL(x, dLi, dLp, dLf, T1, T2, T3):
a = x <= T1
b = np.logical_and(x > T1, x <= T2)
c = np.logical_and(x > T2, x <= T3)
d = x > T3
slope1 = (dLp - dLi) / T1
slope2 = (dLf - dLp) / (T3 - T2)
return (
a * (dLi + x * slope1) + b * dLp + c * (dLp + (x - T2) * slope2) + d * dLf
)
def guess(self, function):
T1, T2, T3 = 80, 115, 150
dLi, dLp, dLf = (
self.monty_opt.heuristic_dL()[0],
self.monty_opt.heuristic_dL()[T1],
self.monty_opt.heuristic_dL()[-1],
)
if function == "twostep_dL":
return dLi, dLp, dLf, T1, T2, T3
else:
return dLi, dLf, T1
def find_parameters(self, measure_params_V, measure_params_X, function):
heuristic_dL = self.monty_opt.heuristic_dL(
measure_params_V=measure_params_V, measure_params_X=measure_params_X
)
times = np.arange(0, heuristic_dL.shape[0], 1)
f = getattr(self, function)
return scipy.optimize.curve_fit(
f, times, heuristic_dL, p0=self.guess(function)
)[0]
def plotapproximations(self, measure_params_V=None, measure_params_X=None):
full = self.monty_opt.heuristic_dL(measure_params_V, measure_params_X)
times = np.arange(0, full.shape[0], 1)
dLi, dLf, T = self.find_parameters(
measure_params_V, measure_params_X, "linear_dL"
)
one = self.linear_dL(times, dLi, dLf, T)
dLi, dLp, dLf, T1, T2, T3 = self.find_parameters(
measure_params_V, measure_params_X, "twostep_dL"
)
two = self.twostep_dL(times, dLi, dLp, dLf, T1, T2, T3)
errorone = np.abs(one - full).sum() / times[-1]
errortwo = np.abs(two - full).sum() / times[-1]
print(
"The two approximations have the corresponding errors", errorone, errortwo
)
fig = go.Figure()
fig.add_trace(go.Scatter(x=times, y=one, name="linear_dL"))
fig.add_trace(go.Scatter(x=times, y=two, name="twostep_dL"))
fig.add_trace(go.Scatter(x=times, y=full, name="heuristic_dL"))
fig.write_image("plots/approximations.svg")
fig.show()
def optimize_dL(
self, iterations, measure_params_V, measure_params_X, function="twostep_dL"
):
times = np.arange(0, self.monty_opt.timesteps, 1)
f = getattr(self, function)
for _ in range(iterations):
try:
if function == "twostep_dL":
dLi, dLp, dLf, T1, T2, T3 = self.find_parameters(
measure_params_V, measure_params_X, function
)
params = np.array([dLi, dLp, dLf, T1, T2, T3])
new_dL = f(times, dLi, dLp, dLf, T1, T2, T3)
else:
dLi, dLf, T = self.find_parameters(
measure_params_V, measure_params_X, function
)
params = np.array([dLi, dLf, T])
new_dL = f(times, dLi, dLf, T)
self.monty_opt.evolve(
self.monty_opt.N, self.monty_opt.timesteps, dL=new_dL
)
self.method += [function]
self.parameters += [params]
self.efficiency += [self.monty_opt.efficiency()[-1]]
self.velocity += [self.monty_opt.Velocity()[-1]]
self.temperature += [self.monty_opt.Temperature()[-1]]
except:
pass
return max(self.efficiency)
def exhaustive_tries(
self, list_percentiles, list_deviations, approx_function="twostep_dL"
):
self.results = np.zeros((len(list_deviations), len(list_percentiles), 6))
for d in range(len(list_deviations)):
self.monty_opt.sigmav = list_deviations[d]
for p in range(len(list_percentiles)):
print(list_deviations[d], list_percentiles[p])
measure = [("module", None), ("quantile", list_percentiles[p])]
self.reset()
self.optimize_dL(7, measure, measure, approx_function)
best_iteration = self.efficiency.index(max(self.efficiency))
self.results[d, p, 0] = self.efficiency[best_iteration]
self.results[d, p, 1] = best_iteration
self.results[d, p, 2] = self.velocity[best_iteration]
self.results[d, p, 3] = list_deviations[d]
self.results[d, p, 4] = list_percentiles[p]
self.results[d, p, 5] = self.temperature[best_iteration]
return
if __name__ == "__main__":
print("MAIN")
start_time = time.time()
Magnesium = Atom(sct=2e4, lmbds=[457e-9, 462e-9, 634e-9, 285e-9], m_uma=24.305)
N, ts = 1000, 1001
sigmas = np.linspace(0.8, 1.5, num=20)
percentiles = np.linspace(0.5, 0.8, num=10)
monty = MonteCarlo(
atom=Magnesium,
N=N,
timesteps=ts,
sigmav=1,
Magnetic_gradient=np.array([5, 5, 2.5]),
)
optimizer = Optimizer(monty)
optimizer.exhaustive_tries(percentiles, sigmas)
eff_vs_sigmas = optimizer.results[:, :, 0].max(axis=1)
plt.plot(sigmas, eff_vs_sigmas)
plt.show()
# for sigmav in sigmas:
# print(f"Sigmav {sigmav} running... t={time.time()-start_time}")
# results=[]
# for p in percentiles:
# print(f"Percentile {p} running... t={time.time()-start_time}")
# measure=[('module',None),('quantile',p)]
# monty=MonteCarlo(atom=Magnesium,N=N,timesteps=ts,sigmav=sigmav,Magnetic_gradient=np.array([5,5,2.5]))
# optimizer = Optimizer(monty)
# result=optimizer.optimize_dL(10,measure,measure,'twostep_dL')
# results += [result]
# plt.plot(percentiles,results)
# plt.title('sigmav' + str(sigmav))
# plt.show()
print(
f"Total time = {int((time.time()-start_time)//60)} min {(time.time()-start_time)%60}"
)
# t = timeit.Timer(functools.partial(monty.evolve,N,ts,dL))
# print(t.timeit(10))