-
Notifications
You must be signed in to change notification settings - Fork 74
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Problem with samples #4
Comments
I know it may be a rookie mistake as I have little experience with Python and more with Arduino. I think have included everything but I may be wrong. |
Hi @kikomle , are we good to close this issue or still need to be solved? |
I resolved that issue but now my code stops after training |
I solved this also by commenting the graph outputs, after those the program stops maybe there is a key to continue? |
see my comment of second edition of the book |
I am getting this error constantly, I tried with test_size instead of train_size but I am getting the same result.
Here is my code:
`import csv
import datetime
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
import sklearn.metrics
import tensorflow as tf
from numpy import mean
from numpy import std
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras import activations
from tensorflow.keras import layers
from wwo_hist import retrieve_hist_data
BATCH_SIZE = 64
MELTING_TEMPERATURE = 2
MIN_SNOW_CM = 0.5 # Above this value, we consider it as snow
NUM_EPOCHS = 20
OUTPUT_DATASET_FILE = "snow_dataset.csv"
TFL_MODEL_FILE = "snow_forecast_model.tflite"
TFL_MODEL_HEADER_FILE = "snow_forecast_model.h"
TF_MODEL = "snow_forecast"
print("data import")
frequency = 1
api_key = '27a946a50c0e4b0daec134825230803'
location_list = ['canazei']
df_weather = retrieve_hist_data(api_key,
location_list,
'01-JAN-2011',
'31-DEC-2012',
frequency,
location_label = False,
export_csv = False,
store_df = True)
t_list = df_weather[0].tempC.astype(float).to_list()
h_list = df_weather[0].humidity.astype(float).to_list()
s_list = df_weather[0].totalSnow_cm.astype(float).to_list()
print("binarize")
def binarize(snow, threshold):
if snow > threshold:
return 1
else:
return 0
print("graphprint")
#s_bin_list = [binarize(snow, 0.5) for snow in s_list]
#cm = plt.colormaps.get_cmap('gray_r')
#plt.figure(dpi=150)
#sc = plt.scatter(t_list, h_list, c=s_bin_list, cmap=cm, label="Snow")
#plt.colorbar(sc)
#plt.grid(True)
#plt.title("Snow(T, H)")
#plt.xlabel("Temperature - °C")
#plt.ylabel("Humidity - %")
#plt.show()
print("labels")
def gen_label(snow, temperature):
if snow > 0.5 and temperature < 2:
return "Yes"
else:
return "No"
snow_labels = [gen_label(snow, temp) for snow, temp in zip(s_list, t_list)]
csv_header = ["Temp0", "Temp1", "Temp2", "Humi0", "Humi1", "Humi2", "Snow"]
df_dataset = pd.DataFrame(list(zip(t_list[:-2], t_list[1:-1], t_list[:-2], h_list[:-2], h_list[1:-1], h_list[:2], snow_labels[2:])), columns = csv_header)
df0 = df_dataset[df_dataset['Snow'] == "No"]
df1 = df_dataset[df_dataset['Snow'] == "Yes"]
if len(df1.index) < len(df0.index):
df0_sub = df0.sample(len(df1.index))
df_dataset = pd.concat([df0_sub, df1])
else:
df1_sub = df1.sample(len(df0.index))
df_dataset = pd.concat([df1_sub, df0])
t_list = df_dataset['Temp0'].tolist()
h_list = df_dataset['Humi0'].tolist()
t_list = t_list + df_dataset['Temp2'].tail(2).tolist()
h_list = t_list + df_dataset['Humi2'].tail(2).tolist()
t_avg = mean(t_list)
h_avg = mean(h_list)
t_std = std(t_list)
h_std = std(h_list)
print("COPY HERE !!!!!")
print("Temperature - [MEAN, STD]", round(t_avg, 5), round(t_std, 5))
print("Humidity - [MEAN, STD]", round(h_avg, 5), round(h_std, 5))
def scaling(val, avg, std):
return (val - avg) / std;
df_dataset['Temp0'] = df_dataset['Temp0'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Temp1'] = df_dataset['Temp1'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Temp2'] = df_dataset['Temp2'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Humi0'] = df_dataset['Humi0'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Humi1'] = df_dataset['Humi1'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Humi2'] = df_dataset['Humi2'].apply(lambda x:scaling(x, t_avg, t_std))
f_names = df_dataset.columns.values[0:6]
l_name = df_dataset.columns
x = df_dataset[f_names]
y = df_dataset[l_name]
labelencoder = LabelEncoder()
labelencoder.fit(y.Snow)
y_encoded = labelencoder.transform(y.Snow)
Split 1 (85% vs 15%)
x_train, x_validate_test, y_train, y_validate_test = train_test_split(x, y_encoded, train_size=0.15, random_state = 1)
Split 2 (50% vs 50%)
x_test, x_validate, y_test, y_validate = train_test_split(x_validate_test, y_validate_test, train_size=0.50, random_state = 3)
model = tf.keras.Sequential()
model.add(layers.Dense(12, activations='relu', input_shape=(len(f_names),)))
model.add(layers.Dropout(0.2))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()
`
The text was updated successfully, but these errors were encountered: