-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathflags.cc
1258 lines (1171 loc) · 43.9 KB
/
flags.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/flags.h"
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/phi/backends/gpu/cuda/cudnn_workspace_helper.h"
#endif
namespace phi {
const ExportedFlagInfoMap &GetExportedFlagInfoMap() {
return *GetMutableExportedFlagInfoMap();
}
ExportedFlagInfoMap *GetMutableExportedFlagInfoMap() {
static ExportedFlagInfoMap g_exported_flag_info_map;
return &g_exported_flag_info_map;
}
} // namespace phi
PHI_DEFINE_EXPORTED_int32(inner_op_parallelism,
0,
"number of threads for inner op");
/**
* NOTE(paddle-dev): This file is designed to define all public FLAGS.
*/
/**
* Paddle initialization related FLAG
* Name: FLAGS_paddle_num_threads
* Since Version: 0.15.0
* Value Range: int32, default=1
* Example: FLAGS_paddle_num_threads=2, set the maximum thread number per
* instance to 2
* Note:
*/
PHI_DEFINE_EXPORTED_int32(paddle_num_threads,
1,
"Number of threads for each paddle instance.");
/**
* Low Precision Op related FLAG
* Name: FLAGS_low_precision_op_list
* Since Version: 2.5.0
* Value Range: int32, default=0
* Example:
* Note: Used to debug. Get the low precision op list of current module.
* FLAGS_check_nan_inf is set.
* - 1, return the low precision op list of current module.
* - 2, return the op list of current module.
*/
PHI_DEFINE_EXPORTED_int32(low_precision_op_list,
0,
"Setting the level of low precision op"
"list printing. It will be return the "
"low precision op list of current module.");
/**
* Operator related FLAG
* Name: FLAGS_check_nan_inf
* Since Version: 0.13.0
* Value Range: bool, default=false
* Example:
* Note: Used to debug. Checking whether operator produce NAN/INF or not.
*/
PHI_DEFINE_EXPORTED_bool(
check_nan_inf,
false,
"Checking whether operator produce NAN/INF or not. It will be "
"extremely slow so please use this flag wisely.");
/**
* Operator related FLAG
* Name: FLAGS_check_nan_inf_level
* Since Version: 2.5.0
* Value Range: int32, default=0
* Example:
* Note: Used to debug. Setting the check and print level when
* FLAGS_check_nan_inf is set.
* - 0, abort the process when any operator produce NAN/INF and only print the
* information of tensor which holds NAN/INF.
* - 1, continue the training or inference process and print the information of
* all tensors which holds NAN/INF.
* - 2, print the information of float tensors when the max or min value
* overflowing float16's limit.
* - 3, print the information of all tensors.
*/
PHI_DEFINE_EXPORTED_int32(
check_nan_inf_level,
0,
"Setting the check and print level when FLAGS_check_nan_inf is set.");
/**
* Operator related FLAG
* Name: FLAGS_check_nan_inf
* Since Version: 0.13.0
* Value Range: bool, default=false
* Example:
* Note: Used to debug. Checking whether operator produce NAN/INF or not.
*/
PHI_DEFINE_EXPORTED_bool(
enable_opt_get_features,
false,
"Checking whether operator produce NAN/INF or not. It will be "
"extremely slow so please use this flag wisely.");
// NOTE(zhiqiu): better to share the flags, otherwise we will have too many
// flags.
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
/**
* CUDA related related FLAG
* Name: FLAGS_enable_cublas_tensor_op_math
* Since Version: 1.2.0
* Value Range: bool, default=false
* Example:
* Note: whether to use Tensor Core, faster but it may loss precision.
*/
PHI_DEFINE_EXPORTED_bool(
enable_cublas_tensor_op_math,
false,
"The enable_cublas_tensor_op_math indicate whether to use Tensor Core, "
"but it may loss precision. Currently, There are two CUDA libraries that"
" use Tensor Cores, cuBLAS and cuDNN. cuBLAS uses Tensor Cores to speed up"
" GEMM computations(the matrices must be either half precision or single "
"precision); cuDNN uses Tensor Cores to speed up both convolutions(the "
"input and output must be half precision) and recurrent neural networks "
"(RNNs).");
/**
* CUDA related related FLAG
* Name: FLAGS_gemm_use_half_precision_compute_type
* Since Version: 2.4
* Value Range: bool, default=false
* Example:
* Note: whether to use fp16 compute type when the input and output is fp16,
* faster but it may loss precision.
*/
PHI_DEFINE_EXPORTED_bool(
gemm_use_half_precision_compute_type,
false,
"Whether to use fp16 compute type when the input and output is fp16, "
"faster but it may loss precision in most case. If true, the compute "
"type will be set to fp16. Default is false.");
/**
* CUDA related FLAG
* Name: FLAGS_selected_gpus
* Since Version: 1.3.0
* Value Range: integer list separated by comma, default empty list
* Example: FLAGS_selected_gpus=0,1,2,3,4,5,6,7 to train or predict with 0~7 gpu
* cards
* Note: A list of device ids separated by comma, like: 0,1,2,3
*/
PHI_DEFINE_EXPORTED_string(
selected_gpus,
"",
"A list of device ids separated by comma, like: 0,1,2,3. "
"This option is useful when doing multi process training and "
"each process have only one device (GPU). If you want to use "
"all visible devices, set this to empty string. NOTE: the "
"reason of doing this is that we want to use P2P communication"
"between GPU devices, use CUDA_VISIBLE_DEVICES can only use"
"share-memory only.");
#endif
#if defined(PADDLE_WITH_CUDA)
/**
* CUDA related FLAG
* Name: FLAGS_cublaslt_exhaustive_search_times
* Since Version: 2.3.0
* Value Range: int64_t, default=0
* Example:
* Note: Represents times of exhaustive search to evaluate performance of
* cuBlasLt matmul algorithm (with/without epilogue). Set this flag
* with value > 0 to enable exhaustive search. Default is 0, means
* getting algorithms via heuristic search. There are two search methods
* in cuBlasLt, heuristic search and exhaustive search. Exhaustive search
* attempts all cuBlasLt algorithms to select the fastest, which is very
* time-consuming, and the selected algorithm will be cached for a given
* layer specification Once you change the layer specifications
* (such as M, N and K), it will re-search again.
*/
PHI_DEFINE_EXPORTED_int64(
cublaslt_exhaustive_search_times,
0,
"The times of exhaustive search for cuBlasLt matmul with/without "
" epilogue algorithms, default is 0, means disabling exhaustive search.");
#endif
/*
* Kernel related FLAG
* Name: FLAGS_enable_api_kernel_fallback
* Since Version: 2.4
* Value Range: bool, default=true
* Example: FLAGS_enable_api_kernel_fallback=true would allow kernel of current
* backend fallback to CPU one when not found
*/
PHI_DEFINE_EXPORTED_bool(
enable_api_kernel_fallback,
true,
"Whether enable api kernel fallback to CPU one when not found");
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
/**
* CUDNN related FLAG
* Name: FLAGS_cudnn_deterministic
* Since Version: 0.13.0
* Value Range: bool, default=false
* Example:
* Note: whether to use deterministic algorithm in cudnn.
* If true, it will slow down some operators such as conv and pooling.
*/
PHI_DEFINE_EXPORTED_bool(
cudnn_deterministic,
false,
"Whether allow using an autotuning algorithm for convolution "
"operator. The autotuning algorithm may be non-deterministic. If "
"true, the algorithm is deterministic.");
/**
* CUDA related FLAG
* Name: FLAGS_embedding_deterministic
* Since Version: 2.5
* Value Range: int64, default=0
* Example:
* Note: whether to use deterministic algorithm in embedding op.
* If it is 1, it will use the optimized deterministic CUDA kernel in
* embedding op. If it is 2, it will use the legacy deterministic
* CUDA kernel in embedding op.
*/
PHI_DEFINE_EXPORTED_int64(
embedding_deterministic,
0,
"Whether allow using an deterministic algorithm for embedding "
"operator. The deterministic algorithm may be slower. If "
"it is larger than 0, the algorithm is deterministic.");
/**
* CUDNN related FLAG
* Name: FLAGS_conv_workspace_size_limit
* Since Version: 0.13.0
* Value Range: uint64, default=512 (MB)
* Example:
* Note: The internal function of cuDNN obtains the fastest matching algorithm
* within this memory limit. Usually, faster algorithms can be chosen in
* larger workspaces, but memory space can also be significantly
* increased.
* Users need to balance memory and speed.
*/
PHI_DEFINE_EXPORTED_int64(conv_workspace_size_limit,
phi::backends::gpu::kDefaultConvWorkspaceSizeLimitMB,
"cuDNN convolution workspace limit in MB unit.");
/**
* CUDNN related FLAG
* Name: FLAGS_cudnn_exhaustive_search
* Since Version: 1.2.0
* Value Range: bool, default=false
* Example:
* Note: Represents whether an exhaustive search method is used to
* select a convolution algorithm. There are two search methods in cuDNN,
* heuristic search and exhaustive search. Exhaustive search attempts
* all cuDNN algorithms to select the fastest. This method is very
* time-consuming, and the selected algorithm will be cached for a given
* layer specification. Once you change the layer specifications
* (such as batch size, feature map size), it will search again.
*/
PHI_DEFINE_EXPORTED_bool(
cudnn_exhaustive_search,
false,
"Whether enable exhaustive search for cuDNN convolution or "
"not, default is False.");
/**
* CUDNN related FLAG
* Name: FLAGS_cudnn_exhaustive_search_times
* Since Version:
* Value Range:
* Example:
* Note: only used to predict for advanced developer
*/
PHI_DEFINE_EXPORTED_int64(cudnn_exhaustive_search_times,
-1,
"Exhaustive search times for cuDNN convolution, "
"default is -1, not exhaustive search");
/**
* CUDNN related FLAG
* Name: FLAGS_cudnn_batchnorm_spatial_persistent
* Since Version: 1.4.0
* Value Range: bool, default=false
* Example:
* Note: CUDNN_BATCHNORM_SPATIAL_PERSISTENT in batchnorm. This mode can be
* faster in
* some tasks because an optimized path may be selected for
* CUDNN_DATA_FLOAT
* and CUDNN_DATA_HALF data types, compute capability 6.0 or higher. The
* reason we set it to false by default is that this mode may use scaled
* atomic integer reduction that may cause a numerical overflow for
* certain
* input data range.
*/
PHI_DEFINE_EXPORTED_bool(
cudnn_batchnorm_spatial_persistent,
false,
"Whether enable CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode for cudnn "
"batch_norm, default is False.");
#endif
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
/**
* NCCL related FLAG
* Name: FLAGS_sync_nccl_allreduce
* Since Version: 1.3
* Value Range: bool, default=true
* Example:
* Note: asynchronous nccl allreduce or synchronous issue:
* https://github.com/PaddlePaddle/Paddle/issues/15049
* If you want to change this default value, why?(gongwb)
*/
PHI_DEFINE_EXPORTED_bool(
sync_nccl_allreduce,
true,
"If set true, will call `cudaStreamSynchronize(nccl_stream)`"
"after allreduce, this mode can get better performance in some scenarios.");
#endif
#ifdef PADDLE_WITH_DISTRIBUTE
/**
* Distributed related FLAG
* Name: FLAGS_communicator_max_merge_var_num
* Since Version: 1.5.0
* Value Range: int32, default=20
* Example:
* Note: The maximum number of gradients to be merged into a gradient and
* sent through the communicator. The trainer puts all the gradients
* into the queue, and then the communicator takes the gradients out
* of the queue and sends them after merging.
*/
PHI_DEFINE_EXPORTED_int32(communicator_max_merge_var_num,
20,
"max var num to merge and send");
PHI_DEFINE_EXPORTED_bool(
communicator_is_sgd_optimizer,
true,
"gradient sent to the server is the sum of the gradients "
"calculated by each thread if optimizer is sgd");
/**
* Distributed related FLAG
* Name: FLAGS_communicator_send_queue_size
* Since Version: 1.5.0
* Value Range: int32, default=20
* Example:
* Note: Size for each gradient queue. The trainer puts the gradient into
* the queue, and then the communicator takes it out of the queue and
* sends it out. When the communicator is slow, the queue may be full,
* and the trainer will be continuously blocked before the queue has
* space. It is used to avoid training much faster than communication,
* so that too many gradients are not sent out in time.
*/
PHI_DEFINE_EXPORTED_int32(communicator_send_queue_size,
20,
"queue size to recv gradient before send");
#endif
/**
* Distributed related FLAG
* Name: FLAGS_dist_threadpool_size
* Since Version: 1.0.0
* Value Range: int32, default=0
* Example:
* Note: Control the number of threads used for distributed modules.
* If it is not set, it is set to a hard thread.
*/
PHI_DEFINE_EXPORTED_int32(dist_threadpool_size,
0,
"number of threads used for distributed executed.");
/**
* Garbage collector related FLAG
* Name: FLAGS_eager_delete_tensor_gb
* Since Version: 1.0.0
* Value Range: double, default=kDefaultEagerDeleteTensorGB
* Example: FLAGS_eager_delete_tensor_gb=0.0, Release memory garbage once it is
* no longer used.
* FLAGS_eager_delete_tensor_gb=1.0, Release memory garbage when
* garbage occupies 1.0GB of memory.
* FLAGS_eager_delete_tensor_gb=-1.0, Disable garbage collection
* policy.
* Note: Represents whether a garbage collection strategy is used to optimize
* network memory usage.
* It is recommended that users set FLAGS_eager_delete_tensor_gb=0.0 to
* enable garbage collection strategy when training large networks.
*/
// Disable gc by default when inference library is built
static const double kDefaultEagerDeleteTensorGB = 0;
PHI_DEFINE_EXPORTED_double(
eager_delete_tensor_gb,
kDefaultEagerDeleteTensorGB,
"Memory size threshold (GB) when the garbage collector clear tensors."
"Disabled when this value is less than 0");
/**
* Memory related FLAG
* Name: FLAGS_fast_eager_deletion_mode
* Since Version: 1.3.0
* Value Range: bool, default=true
* Example:
* Note: Whether to use fast garbage collection strategy.
* If not set, the GPU memory is released at the end of the CUDA kernel.
* Otherwise, the GPU memory will be released before the CUDA kernel
* has finished, which will make the garbage collection strategy faster.
* Only works when garbage collection strategy is enabled.
*/
PHI_DEFINE_EXPORTED_bool(
fast_eager_deletion_mode,
true,
"Fast eager deletion mode. If enabled, memory would release "
"immediately without waiting GPU kernel ends.");
/**
* Memory related FLAG
* Name: FLAGS_memory_fraction_of_eager_deletion
* Since Version: 1.4
* Value Range: double [0.0, 1.0], default=1.0
* Example:
* Note: The percentage of memory size of garbage collection policy
* to release variables.
* If FLAGS_memory_fraction_of_eager_deletion = 1.0,
* all temporary variables in the network will be released.
* If FLAGS_memory_fraction_of_eager_deletion = 0.0,
* no temporary variables in the network are released.
* If 0.0 < FLAGS_memory_fraction_of_eager_deletion < 1.0,
* all temporary variables will be sorted in descending order
* according to their memory size, and only variables with the
* largest FLAGS_memory_fraction_of_eager_deletion ratio will be released.
* The flag is only valid when running parallel data compilers.
*/
PHI_DEFINE_EXPORTED_double(
memory_fraction_of_eager_deletion,
1.0,
"Fraction of eager deletion. If less than 1.0, all variables in "
"the program would be sorted according to its memory size, and "
"only the FLAGS_memory_fraction_of_eager_deletion of the largest "
"variables would be deleted.");
/**
* Allocator related FLAG
* Name: FLAGS_allocator_strategy
* Since Version: 1.2
* Value Range: string, {naive_best_fit, auto_growth, thread_local},
* default=auto_growth
* Example:
* Note: For selecting allocator policy of PaddlePaddle.
*/
static constexpr char kDefaultAllocatorStrategy[] = "auto_growth";
PHI_DEFINE_EXPORTED_string(
allocator_strategy,
kDefaultAllocatorStrategy,
"The allocation strategy, enum in [naive_best_fit, auto_growth]. "
"naive_best_fit means the original pre-allocated allocator of Paddle. "
"auto_growth means the auto-growth allocator. "
"These two strategies differ in GPU memory allocation. "
"naive_best_fit strategy would occupy almost all GPU memory by default, "
"which prevents users from starting several Paddle jobs on the same GPU "
"card but leads to less memory fragmentation (i.e., maximum batch "
"size of models may be larger). auto_growth strategy would allocate "
"GPU memory on demand, which allows users to start several Paddle jobs "
"on the same GPU card but may lead to more memory fragmentation "
"(i.e., maximum batch size of models may be smaller).");
/**
* Memory related FLAG
* Name: FLAGS_fraction_of_cpu_memory_to_use
* Since Version: 0.12.0
* Value Range: double, [0.0, 1.0], default=1
* Example:
* Note: Represents the proportion of allocated CPU memory blocks
* to the total memory size of the CPU. Future CPU memory usage
* will be allocated from this memory block. If the memory block does
* not have enough CUDA pinned memory, new memory blocks of the same
* size as the memory block will be allocated from the CUDA pinned
* request util the CPU does not have enough memory.
*/
PHI_DEFINE_EXPORTED_double(fraction_of_cpu_memory_to_use,
1,
"Default use 100% of CPU memory for PaddlePaddle,"
"reserve the rest for page tables, etc");
/**
* Memory related FLAG
* Name: FLAGS_initial_cpu_memory_in_mb
* Since Version: 0.14.0
* Value Range: uint64, default=500 (MB)
* Example:
* Note: The CPU memory block size of the initial allocator in MB.
* The allocator takes the minimum values of
* FLAGS_initial_cpu_memory_in_mb and
* FLAGS_fraction_of_cpu_memory_to_use*(total physical memory)
* as memory block sizes.
*/
PHI_DEFINE_EXPORTED_uint64(initial_cpu_memory_in_mb,
500ul,
"Initial CPU memory for PaddlePaddle, in MD unit.");
/**
* Memory related FLAG
* Name: FLAGS_fraction_of_cuda_pinned_memory_to_use
* Since Version: 0.12.0
* Value Range: double, [0.0, 1.0], default=0.5
* Example:
* Note: Represents the proportion of allocated CUDA pinned memory blocks
* to the total memory size of the CPU. Future CUDA pinned memory usage
* will be allocated from this memory block. If the memory block does
* not have enough CPU memory, new memory blocks of the same
* size as the memory block will be allocated from the CPU
* request util the CPU does not have enough memory.
*/
PHI_DEFINE_EXPORTED_double(
fraction_of_cuda_pinned_memory_to_use,
0.5,
"Default use 50% of CPU memory as the pinned_memory for PaddlePaddle,"
"reserve the rest for page tables, etc");
// NOTE(zhiqiu): better to share the flags, otherwise we will have too many
// flags.
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
defined(PADDLE_WITH_CUSTOM_DEVICE) || defined(PADDLE_WITH_XPU)
/**
* Memory related FLAG
* Name: FLAGS_fraction_of_gpu_memory_to_use
* Since Version: 1.2.0
* Value Range: double, default=0.5 if win32, 0.92 else
* Example:
* Note: Represents the proportion of allocated memory blocks to the total
* memory size
* of the GPU. Future memory usage will be allocated from this memory
* block.
* If the memory block does not have enough GPU memory, new memory blocks
* of
* the same size as the memory block will be allocated from the GPU
* request
* until the GPU does not have enough memory.
*/
#ifndef _WIN32
constexpr static float fraction_of_gpu_memory_to_use = 0.92f;
#else
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
constexpr static float fraction_of_gpu_memory_to_use = 0.5f;
#endif
PHI_DEFINE_EXPORTED_double(
fraction_of_gpu_memory_to_use,
fraction_of_gpu_memory_to_use,
"Allocate a trunk of gpu memory that is this fraction of the "
"total gpu memory size. Future memory usage will be allocated "
"from the trunk. If the trunk doesn't have enough gpu memory, "
"additional trunks of the same size will be requested from gpu "
"until the gpu has no memory left for another trunk.");
/**
* Memory related FLAG
* Name: FLAGS_initial_gpu_memory_in_mb
* Since Version: 1.4.0
* Value Range: uint64, default=0 (MB)
* Example:
* Note: Allocate a specified size of GPU memory block. Later memory usage
* will be allocated from that memory block. If the memory block does not
* have enough GPU memory, the memory block with the size
* FLAGS_reallocate_gpu_memory_in_mb will be requested from the GPU until
* the GPU has no remaining memory.
*/
PHI_DEFINE_EXPORTED_uint64(
initial_gpu_memory_in_mb,
0ul,
"Allocate a trunk of gpu memory whose byte size is specified by "
"the flag. Future memory usage will be allocated from the "
"trunk. If the trunk doesn't have enough gpu memory, additional "
"trunks of the gpu memory will be requested from gpu with size "
"specified by FLAGS_reallocate_gpu_memory_in_mb until the gpu has "
"no memory left for the additional trunk. Note: if you set this "
"flag, the memory size set by "
"FLAGS_fraction_of_gpu_memory_to_use will be overrided by this "
"flag. If you don't set this flag, PaddlePaddle will use "
"FLAGS_fraction_of_gpu_memory_to_use to allocate gpu memory");
/**
* Memory related FLAG
* Name: FLAGS_reallocate_gpu_memory_in_mb
* Since Version: 1.4.0
* Value Range: uint64, default=0 (MB)
* Example:
* Note: If the allocated GPU memory blocks are exhausted,
* additional GPU memory blocks are reallocated
*/
PHI_DEFINE_EXPORTED_uint64(
reallocate_gpu_memory_in_mb,
0ul,
"If this flag is set, Paddle will reallocate the gpu memory with "
"size specified by this flag. Else Paddle will reallocate by "
"FLAGS_fraction_of_gpu_memory_to_use");
PHI_DEFINE_EXPORTED_uint64(
gpu_memory_limit_mb,
0UL,
"The maximum gpu memory limit that the process can allocate. "
"If it is equal to 0, there would be no limit and all gpu memory "
"would be available to the process. If it is larger than 0, "
"the process would raise out of memory error if the allocated "
"memory exceeds the limit even though there is available "
"memory on the gpu card. The unit is MB and default value is 0.");
/**
* Memory related FLAG
* Name: FLAGS_auto_growth_chunk_size_in_mb
* Since Version: 2.5.0
* Value Range: uint64, default=0 (MB)
* Example:
* Note: The minimal chunk size of GPU memory block in auto_growth allocator.
* The real chunk size is max(request_size,
* FLAGS_auto_growth_chunk_size_in_mb).
*/
PHI_DEFINE_EXPORTED_uint64(
auto_growth_chunk_size_in_mb,
0ul,
"The minimal chunk size of GPU memory block in auto_growth allocator. "
"The real chunk size is max(request_size, "
"FLAGS_auto_growth_chunk_size_in_mb).");
#endif
/**
* Scope related FLAG
* Name: local_exe_sub_scope_limit
* Since Version: 1.6.0
* Value Range: double, default=256 (MB)
* Example:
* Note:
*/
PHI_DEFINE_EXPORTED_double(
local_exe_sub_scope_limit,
256.0, // MBytes
"The memory up limit of sub-scopes of local execution scope for "
"each CUDAPlace. If you don't need to limit the memory, "
"you should set FLAGS_local_exe_sub_scope_limit=-1. "
"The default value is 256 MBytes.");
PHI_DEFINE_EXPORTED_bool(
reader_queue_speed_test_mode,
false,
"If set true, the queue.pop will only get data from queue but not "
"remove the data from queue for speed testing");
/**
* MKLDNN related FLAG
* Name: use_mkldnn
* Since Version:
* Value Range: bool, default=false
* Example:
* Note:
*/
PHI_DEFINE_EXPORTED_bool(use_mkldnn, false, "Use MKLDNN to run");
/**
* Debug related FLAG
* Name: FLAGS_call_stack_level
* Since Version: 2.0.0
* Value Range: int, default=2
* Example:
* Note: Used to debug. Determine the call stack to print when error or
* exeception happens.
* If FLAGS_call_stack_level == 0, only the error message summary will be shown.
* If FLAGS_call_stack_level == 1, the python stack and error message summary
* will be shown.
* If FLAGS_call_stack_level == 2, the python stack, c++ stack, and error
* message summary will be shown.
*/
#ifdef PADDLE_NO_PYTHON
static const int32_t kDefaultCallStackLevel = 2;
#else
static const int32_t kDefaultCallStackLevel = 1;
#endif
PHI_DEFINE_EXPORTED_int32(
call_stack_level,
kDefaultCallStackLevel,
"Determine the call stack to print when error or exeception happens."
// TODO(zhiqiu): implement logic of FLAGS_call_stack_level==0
// "If FLAGS_call_stack_level == 0, only the error message summary will be "
// "shown. "
"If FLAGS_call_stack_level == 1, the python stack and error message "
"summary will be shown."
"If FLAGS_call_stack_level == 2, the python stack, c++ stack, and "
"error message summary will be shown.");
/**
* Debug related FLAG
* Name: sort_sum_gradient
* Since Version: 2.0.0
* Value Range: bool, default=false
* Example:
* Note: If True, gradients are summed by the reverse order of
* the forward execution sequence.
*/
PHI_DEFINE_EXPORTED_bool(sort_sum_gradient,
false,
"Sum gradients by the reverse order of "
"the forward execution sequence.");
/**
* Performance related FLAG
* Name: max_inplace_grad_add
* Since Version: 2.0.0
* Value Range: int32, default=0
* Example:
* Note: The maximum number of inplace grad_add.
*/
PHI_DEFINE_EXPORTED_int32(
max_inplace_grad_add,
0,
"The maximum number of inplace grad_add. When doing "
"gradient accumulation, if the number of gradients need to that "
"less FLAGS_max_inplace_grad_add, than it will be use several grad_add"
"instead of sum. Default is 0.");
/**
* Tensor.numpy() has a hack, and this flag can close this hack
* [true]: set 0D Tensor to 1D Numpy
* [false]: not set 0D Tensor to 1D Numpy, close the hack
*
* Now, just set true by default in 2.5 transition time
* which will be removed in future (2.6 or 2.7) .
*/
PHI_DEFINE_EXPORTED_bool(set_to_1d, true, "set 0D Tensor to 1D numpy");
/**
* Debug related FLAG
* Name: tracer_mkldnn_ops_on
* Since Version: 2.0.0
* Value Range: string, default=empty
* Example:
* Note: Holds list of operation types with OneDNN kernels to be enabled.
*/
PHI_DEFINE_EXPORTED_string(tracer_mkldnn_ops_on,
"",
"List of OneDNN operation types to be turned on");
/**
* Debug related FLAG
* Name: tracer_mkldnn_ops_off
* Since Version: 2.0.0
* Value Range: string, default=empty
* Example:
* Note: Holds list of operation types with OneDNN kernels to be disabled.
*/
PHI_DEFINE_EXPORTED_string(tracer_mkldnn_ops_off,
"",
"List of OneDNN operation types to be turned off");
/**
* Debug related FLAG
* Name: check_kernel_launch
* Since Version: 2.1.0
* Value Range: bool, default=false
* Example:
* Note: Check kernel launch status after every kernel compute.
*/
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PHI_DEFINE_EXPORTED_bool(
check_kernel_launch,
false,
"Check kernel launch status after every kernel compute");
#endif
/**
* CUDNN related FLAG
* Name: conv2d_disable_cudnn
* Since Version:
* Value Range: bool, default=false
* Example:
* Note: Disable cudnn in conv2d.
*/
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PHI_DEFINE_EXPORTED_bool(conv2d_disable_cudnn,
false,
"Disable cudnn in conv2d");
PHI_DEFINE_EXPORTED_bool(use_fast_math,
false,
"Whether to use fast math GPU functions.");
#endif
/**
* Distributed related FLAG
* Name: FLAGS_get_host_by_name_time
* Since Version: 2.2.0
* Value Range: int32, default=120
* Example:
* Note: Get host by name time.
*/
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_XPU) || \
defined(PADDLE_WITH_HIP) || defined(PADDLE_WITH_CUSTOM_DEVICE)
PHI_DEFINE_EXPORTED_int32(get_host_by_name_time,
120,
"The maximum time for get host by name time");
#endif
/**
* Distributed related FLAG
* Name: FLAGS_apply_pass_to_program
* Since Version: 2.2.0
* Value Range: bool, default=false
* Example: FLAGS_apply_pass_to_program=true would apply IR Pass to
* program when using Fleet APIs.
* Note: Apply IR pass to program. Be only useful when using Fleet APIs.
*/
PHI_DEFINE_EXPORTED_bool(
apply_pass_to_program,
false,
"It controls whether to apply IR pass to program when using Fleet APIs");
/**
* Distributed related FLAG
* Name: FLAGS_graph_load_in_parallel
* Since Version: 2.2.0
* Value Range: bool, default=false
* Example:
* Note: Control whether load graph node and edge with multi threads parallely
* If it is not set, load graph data with one thread
*/
PHI_DEFINE_EXPORTED_bool(graph_load_in_parallel,
false,
"It controls whether load graph node and edge with "
"mutli threads parallely.");
/**
* Distributed related FLAG
* Name: FLAGS_graph_metapath_split_opt
* Since Version: 2.2.0
* Value Range: bool, default=false
* Example:
* Note: Control whether load graph node and edge with multi threads parallely
* If it is not set, load graph data with one thread
*/
PHI_DEFINE_EXPORTED_bool(graph_metapath_split_opt,
false,
"It controls whether load graph node and edge with "
"mutli threads parallely.");
/**
* Distributed related FLAG
* Name: FLAGS_graph_get_neighbor_id
* Since Version: 2.2.0
* Value Range: bool, default=false
* Example:
* Note: Control get all neighbor id when running sub part graph
* If it is not set, do not need get neighbor id when run all part graph
*/
PHI_DEFINE_EXPORTED_bool(
graph_get_neighbor_id,
false,
"It controls get all neighbor id when running sub part graph.");
/**
* Distributed related FLAG
* Name: enable_exit_when_partial_worker
* Since Version: 2.2.0
* Value Range: bool, default=false
* Example:
* Note: Control whether exit trainer when an worker has no ins.
* If it is not set, trainer will exit until all worker finish train.
*/
PHI_DEFINE_EXPORTED_bool(
enable_exit_when_partial_worker,
false,
"It controls whether exit trainer when an worker has no ins.");
/**
* Distributed related FLAG
* Name: enable_exit_when_partial_worker
* Since Version: 2.2.0
* Value Range: bool, default=false
* Example:
* Note: represent gpugraph storage mode, 1 for full hbm, 2 for hbm + mem + ssd.
*/
PHI_DEFINE_EXPORTED_int32(gpugraph_storage_mode,
1,
"gpugraph storage mode, default 1");
/**
* KP kernel related FLAG
* Name: FLAGS_run_kp_kernel
* Since Version: 2.3.0
* Value Range: bool, default=false
* Example: FLAGS_run_kp_kernel=true would use the kp kernel to compute in the
* Op.
* Note:
*/
PHI_DEFINE_EXPORTED_bool(run_kp_kernel,
false,
"It controls whether to run PaddlePaddle using KP");
/**
* Distributed related FLAG
* Name: FLAGS_allreduce_record_one_event
* Since Version: 2.2.0
* Value Range: bool, default=false
* Example: FLAGS_allreduce_record_one_event=true makes the allreduce
* operations would only wait one event instead of multiple events.
* Note: Make the allreduce operations would only wait one event instead of
* multiple events. Currently, only fuse allreduce supports this.
* Otherwise, the precision may be wrong.
*/
PHI_DEFINE_EXPORTED_bool(allreduce_record_one_event,
false,
"It controls whether the allreduce operations "
"would only wait one event instead of multiple "
"events. Currently, only fuse allreduce supports "
"this. Otherwise, the precision may be wrong.");
#ifdef PADDLE_WITH_CINN
/*
* CINN related FLAG
* Name: FLAGS_use_cinn
* Since Version: 2.3
* Value Range: bool, default=false
* Example: FLAGS_use_cinn=true would run PaddlePaddle using CINN
*/
PHI_DEFINE_EXPORTED_bool(use_cinn,
false,
"It controls whether to run PaddlePaddle using CINN");
/*
* CINN related FLAG
* Name: FLAGS_allow_cinn_ops
* Since Version: 2.3
* Value Range: string, default=""
* Example: FLAGS_allow_cinn_ops="mul;relu" would only cover `mul` and `relu`
* when using CINN
*/
PHI_DEFINE_EXPORTED_string(allow_cinn_ops,
"",
"It controls the cinn op subset to be used, "
"which has the highest priority.");
/*
* CINN related FLAG
* Name: FLAGS_deny_cinn_ops
* Since Version: 2.3
* Value Range: string, default=""
* Example: FLAGS_deny_cinn_ops="mul;relu" would block `mul` and `relu` two ops
* when using CINN
*/
PHI_DEFINE_EXPORTED_string(deny_cinn_ops,
"",
"It controls the cinn op subset to be not used.");
/*
* CINN related FLAG
* Name: FLAGS_enable_pe_launch_cinn
* Since Version: 2.3
* Value Range: bool, default=true
* Example: FLAGS_enable_pe_launch_cinn=true would execute the CINN compiled
* instructions of a paddle graph with ParallelExecutor, otherwise with the
* CINN compiled runtime program in sequential order.
*/
PHI_DEFINE_EXPORTED_bool(enable_pe_launch_cinn,
true,
"It controls whether to execute cinn compiled "
"program with ParallelExecutor");
/*
* CINN related FLAG
* Name: FLAGS_enable_interpretercore_launch_cinn
* Since Version: 2.4
* Value Range: bool, default=true
* Example: FLAGS_enable_interpretercore_launch_cinn=true would execute the CINN
* compiled instructions of a paddle graph with InterpreterCore, otherwise with
* the CINN compiled runtime program in sequential order.
*/