-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathPWMServo.cpp
280 lines (236 loc) · 7.88 KB
/
PWMServo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#include "Arduino.h"
#include "PWMServo.h"
/*
PWMServo.cpp - Hardware Servo Timer Library
http://arduiniana.org/libraries/pwmservo/
Author: Jim Studt, jim@federated.com
Copyright (c) 2007 David A. Mellis. All right reserved.
renamed to PWMServo by Mikal Hart
ported to other chips by Paul Stoffregen
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define NO_ANGLE (0xff)
#if defined(__AVR__)
#include <avr/interrupt.h>
uint8_t PWMServo::attachedA = 0;
uint8_t PWMServo::attachedB = 0;
#ifdef SERVO_PIN_C
uint8_t PWMServo::attachedC = 0;
#endif
void PWMServo::seizeTimer1()
{
uint8_t oldSREG = SREG;
cli();
TCCR1A = _BV(WGM11); /* Fast PWM, ICR1 is top */
TCCR1B = _BV(WGM13) | _BV(WGM12) /* Fast PWM, ICR1 is top */
| _BV(CS11) /* div 8 clock prescaler */
;
OCR1A = 3000;
OCR1B = 3000;
ICR1 = clockCyclesPerMicrosecond()*(20000L/8); // 20000 uS is a bit fast for the refresh, 20ms, but
// it keeps us from overflowing ICR1 at 20MHz clocks
// That "/8" at the end is the prescaler.
#if defined(__AVR_ATmega8__)
TIMSK &= ~(_BV(TICIE1) | _BV(OCIE1A) | _BV(OCIE1B) | _BV(TOIE1) );
#else
TIMSK1 &= ~(_BV(OCIE1A) | _BV(OCIE1B) | _BV(TOIE1) );
#endif
SREG = oldSREG; // undo cli()
}
void PWMServo::releaseTimer1() {}
PWMServo::PWMServo() : pin(0), angle(NO_ANGLE) {}
uint8_t PWMServo::attach(int pinArg, int min, int max)
{
#ifdef SERVO_PIN_C
if (pinArg != SERVO_PIN_A && pinArg != SERVO_PIN_B && pinArg != SERVO_PIN_C) return 0;
#else
if (pinArg != SERVO_PIN_A && pinArg != SERVO_PIN_B) return 0;
#endif
min16 = min / 16;
max16 = max / 16;
pin = pinArg;
angle = NO_ANGLE;
digitalWrite(pin, LOW);
pinMode(pin, OUTPUT);
#ifdef SERVO_PIN_C
if (!attachedA && !attachedB && !attachedC) seizeTimer1();
#else
if (!attachedA && !attachedB) seizeTimer1();
#endif
if (pin == SERVO_PIN_A) {
attachedA = 1;
TCCR1A = (TCCR1A & ~_BV(COM1A0)) | _BV(COM1A1);
}
if (pin == SERVO_PIN_B) {
attachedB = 1;
TCCR1A = (TCCR1A & ~_BV(COM1B0)) | _BV(COM1B1);
}
#ifdef SERVO_PIN_C
if (pin == SERVO_PIN_C) {
attachedC = 1;
TCCR1A = (TCCR1A & ~_BV(COM1C0)) | _BV(COM1C1);
}
#endif
return 1;
}
void PWMServo::detach()
{
// muck with timer flags
if (pin == SERVO_PIN_A) {
attachedA = 0;
TCCR1A = TCCR1A & ~_BV(COM1A0) & ~_BV(COM1A1);
pinMode(pin, INPUT);
}
if (pin == SERVO_PIN_B) {
attachedB = 0;
TCCR1A = TCCR1A & ~_BV(COM1B0) & ~_BV(COM1B1);
pinMode(pin, INPUT);
}
#ifdef SERVO_PIN_C
if (pin == SERVO_PIN_C) {
attachedC = 0;
TCCR1A = TCCR1A & ~_BV(COM1C0) & ~_BV(COM1C1);
pinMode(pin, INPUT);
}
#endif
#ifdef SERVO_PIN_C
if (!attachedA && !attachedB && !attachedC) releaseTimer1();
#else
if (!attachedA && !attachedB) releaseTimer1();
#endif
}
void PWMServo::write(int angleArg)
{
uint16_t p;
if (angleArg < 0) angleArg = 0;
if (angleArg > 180) angleArg = 180;
angle = angleArg;
// bleh, have to use longs to prevent overflow, could be tricky if always a 16MHz clock, but not true
// That 8L on the end is the TCNT1 prescaler, it will need to change if the clock's prescaler changes,
// but then there will likely be an overflow problem, so it will have to be handled by a human.
p = (min16*16L*clockCyclesPerMicrosecond() + (max16-min16)*(16L*clockCyclesPerMicrosecond())*angle/180L)/8L;
if (pin == SERVO_PIN_A) OCR1A = p;
if (pin == SERVO_PIN_B) OCR1B = p;
#ifdef SERVO_PIN_C
if (pin == SERVO_PIN_C) OCR1C = p;
#endif
}
uint8_t PWMServo::attached()
{
if (pin == SERVO_PIN_A && attachedA) return 1;
if (pin == SERVO_PIN_B && attachedB) return 1;
#ifdef SERVO_PIN_C
if (pin == SERVO_PIN_C && attachedC) return 1;
#endif
return 0;
}
#elif defined(__arm__) && defined(TEENSYDUINO)
uint32_t PWMServo::attachedpins[(NUM_DIGITAL_PINS+31)/32]; // 1 bit per digital pin
PWMServo::PWMServo() : pin(255), angle(NO_ANGLE) {}
uint8_t PWMServo::attach(int pinArg, int min, int max)
{
//Serial.printf("attach, pin=%d, min=%d, max=%d\n", pinArg, min, max);
if (pinArg < 0 || pinArg >= NUM_DIGITAL_PINS) return 0;
if (!digitalPinHasPWM(pinArg)) return 0;
pin = pinArg;
analogWriteFrequency(pin, 50);
min16 = min >> 4;
max16 = max >> 4;
angle = NO_ANGLE;
digitalWrite(pin, LOW);
pinMode(pin, OUTPUT);
attachedpins[pin >> 5] |= (1 << (pin & 31));
return 1;
}
void PWMServo::write(int angleArg)
{
//Serial.printf("write, pin=%d, angle=%d\n", pin, angleArg);
if (pin >= NUM_DIGITAL_PINS) return;
if (angleArg < 0) angleArg = 0;
if (angleArg > 180) angleArg = 180;
angle = angleArg;
uint32_t us = (((max16 - min16) * 46603 * angle) >> 11) + (min16 << 12); // us*256
uint32_t duty = (us * 3355) >> 22;
//float usec = (float)((max16 - min16)<<4) * ((float)angle / 180.0f) + (float)(min16<<4);
//uint32_t duty = (int)(usec / 20000.0f * 4096.0f);
//Serial.printf("angle=%d, usec=%.2f, us=%.2f, duty=%d, min=%d, max=%d\n",
//angle, usec, (float)us / 256.0f, duty, min16<<4, max16<<4);
#if TEENSYDUINO >= 137
noInterrupts();
uint32_t oldres = analogWriteResolution(12);
analogWrite(pin, duty);
analogWriteResolution(oldres);
interrupts();
#else
analogWriteResolution(12);
analogWrite(pin, duty);
#endif
}
uint8_t PWMServo::attached()
{
if (pin >= NUM_DIGITAL_PINS) return 0;
return (attachedpins[pin >> 5] & (1 << (pin & 31))) ? 1 : 0;
}
//======================================================================
// Arduino UNO R4
//======================================================================
#elif defined(ARDUINO_UNOR4_WIFI) || defined(ARDUINO_UNOR4_MINIMA)
#include <pwm.h>
uint32_t PWMServo::attachedpins[(NUM_DIGITAL_PINS+31)/32]; // 1 bit per digital pin
PWMServo::PWMServo() : pin(255), angle(NO_ANGLE) {}
uint8_t PWMServo::attach(int pinArg, int min, int max)
{
// Note: UNOR4 does not support Serial.printf
//Serial.print("attach, pin="); Serial.println(pinArg, DEC);
if (pinArg < 0 || pinArg >= (int)NUM_DIGITAL_PINS) return 0;
// Hack attempt use PwmOut object to switch to 50 hz and to see if
// the pin is valid.
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
//Serial.print("PWMServo::attach pin:"); Serial.println(pinArg);
pwmOut = new PwmOut(pinArg);
if (!pwmOut->begin(20000, 0)) {
delete pwmOut;
//Serial.println("pwm.being failed");
return 0;
}
//Serial.println("pwm.begin called");
pwmOut->pulse_perc(1.5/50.0);
delay(10);
pin = pinArg;
min16 = min >> 4;
max16 = max >> 4;
angle = NO_ANGLE;
attachedpins[pin >> 5] |= (1 << (pin & 31));
return 1;
}
void PWMServo::write(int angleArg)
{
//Serial.printf("write, pin=%d, angle=%d\n", pin, angleArg);
if (pin >= NUM_DIGITAL_PINS) return;
if (pwmOut == nullptr) return;
if (angleArg < 0) angleArg = 0;
if (angleArg > 180) angleArg = 180;
angle = angleArg;
float usec = (float)((max16 - min16)<<4) * ((float)angle / 180.0f) + (float)(min16<<4);
//uint32_t duty = (int)(usec / 20000.0f * 4096.0f);
//Serial.print("angle="); Serial.print(angle, DEC); Serial.print(", usec="); Serial.print(usec, 3);
//Serial.print(", duty="); Serial.println(duty, DEC);
pwmOut->pulseWidth_us((int)usec);
}
uint8_t PWMServo::attached()
{
if (pin >= NUM_DIGITAL_PINS) return 0;
return (attachedpins[pin >> 5] & (1 << (pin & 31))) ? 1 : 0;
}
#endif