forked from google/gapid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvk_spy_helpers.cpp.tmpl
705 lines (631 loc) · 30.6 KB
/
vk_spy_helpers.cpp.tmpl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
{{/*
* Copyright (C) 2017 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/}}
{{/* ---- Includes ---- */}}
{{Include "../../templates/cpp_common.tmpl"}}
{{$filename := print (Global "API") "_spy_helpers.cpp" }}
{{$ | Macro "Exports" | Reflow 4 | Write $filename}}
{{define "Exports"}}
{{AssertType $ "API"}}
{{Template "C++.Copyright"}}
¶
#include "gapii/cc/vulkan_exports.h"
#include "gapii/cc/vulkan_extras.h"
#include "gapii/cc/vulkan_types.h"
#include "gapii/cc/vulkan_layer_extras.h"
#include "gapii/cc/vulkan_imports.h"
#include "gapii/cc/vulkan_spy.h"
¶
#include "core/os/device/deviceinfo/cc/query.h"
¶
extern "C" {«
// For this to function on Android the entry-point names for GetDeviceProcAddr
// and GetInstanceProcAddr must be ${layer_name}/Get*ProcAddr.
// This is a bit surprising given that we *MUST* also export
// vkEnumerate*Layers without any prefix.
VK_LAYER_EXPORT VKAPI_ATTR gapii::PFN_vkVoidFunction VKAPI_CALL
gapid_vkGetDeviceProcAddr(gapii::VkDevice dev, const char *funcName) {
return gapii::vkGetDeviceProcAddr(dev, funcName);
}
VK_LAYER_EXPORT VKAPI_ATTR gapii::PFN_vkVoidFunction VKAPI_CALL
gapid_vkGetInstanceProcAddr(gapii::VkInstance instance, const char *funcName) {
return gapii::vkGetInstanceProcAddr(instance, funcName);
}
// Documentation is sparse for android, looking at libvulkan.so
// These 4 function must be defined in order for this to even
// be considered for loading.
VK_LAYER_EXPORT VKAPI_ATTR uint32_t VKAPI_CALL
gapid_vkEnumerateInstanceLayerProperties(uint32_t *pCount,
gapii::VkLayerProperties *pProperties) {
return gapii::vkEnumerateInstanceLayerProperties(pCount, pProperties);
}
// On Android this must also be defined, even if we have 0
// layers to expose.
VK_LAYER_EXPORT VKAPI_ATTR uint32_t VKAPI_CALL
gapid_vkEnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pCount,
gapii::VkExtensionProperties *pProperties) {
return gapii::vkEnumerateInstanceExtensionProperties(pLayerName, pCount, pProperties);
}
VK_LAYER_EXPORT VKAPI_ATTR uint32_t VKAPI_CALL
gapid_vkEnumerateDeviceLayerProperties(gapii::VkPhysicalDevice device, uint32_t *pCount,
gapii::VkLayerProperties *pProperties) {
return gapii::vkEnumerateDeviceLayerProperties(device, pCount, pProperties);
}
// On android this must also be defined, even if we have 0
// layers to expose.
VK_LAYER_EXPORT VKAPI_ATTR uint32_t VKAPI_CALL
gapid_vkEnumerateDeviceExtensionProperties(gapii::VkPhysicalDevice device, const char *pLayerName, uint32_t *pCount,
gapii::VkExtensionProperties *pProperties) {
return gapii::vkEnumerateDeviceExtensionProperties(device, pLayerName, pCount, pProperties);
}
}
namespace gapii {
uint32_t VulkanSpy::SpyOverride_vkEnumerateInstanceLayerProperties(uint32_t *pCount, VkLayerProperties *pProperties) {
if (pProperties == NULL) {
*pCount = 1;
return VkResult::VK_SUCCESS;
}
if (pCount == 0) {
return VkResult::VK_INCOMPLETE;
}
*pCount = 1;
memset(pProperties, 0x00, sizeof(*pProperties));
strcpy((char*)pProperties->mlayerName, "VkGraphicsSpy");
pProperties->mspecVersion = VK_VERSION_MAJOR(1) | VK_VERSION_MINOR(0) | 5;
pProperties->mimplementationVersion = 1;
strcpy((char*)pProperties->mdescription, "vulkan_trace");
return VkResult::VK_SUCCESS;
}
uint32_t VulkanSpy::SpyOverride_vkEnumerateDeviceLayerProperties(VkPhysicalDevice dev, uint32_t *pCount, VkLayerProperties *pProperties) {
if (pProperties == NULL) {
*pCount = 1;
return VkResult::VK_SUCCESS;
}
if (pCount == 0) {
return VkResult::VK_INCOMPLETE;
}
*pCount = 1;
memset(pProperties, 0x00, sizeof(*pProperties));
strcpy((char*)pProperties->mlayerName, "VkGraphicsSpy");
pProperties->mspecVersion = VK_VERSION_MAJOR(1) | VK_VERSION_MINOR(0) | 5;
pProperties->mimplementationVersion = 1;
strcpy((char*)pProperties->mdescription, "vulkan_trace");
return VkResult::VK_SUCCESS;
}
PFN_vkVoidFunction VulkanSpy::SpyOverride_vkGetInstanceProcAddr(VkInstance instance, const char* pName) {
{{range $c := AllCommands $}}
{{if (Macro "IsIndirected" "Command" $c "IndirectOn" "VkInstance")}}
{{$name := Macro "CmdName" $c}}
if(!strcmp(pName, "{{$name}}"))
{{if eq $name "vkEnumeratePhysicalDevices"}}
return reinterpret_cast<PFN_vkVoidFunction>(VulkanSpy::EnumeratePhysicalDevicesAndCacheProperties);
{{else}}
return reinterpret_cast<PFN_vkVoidFunction>(gapii::{{$name}});
{{end}}
{{end}}
{{end}}
if (!strcmp(pName, "vkCreateInstance")) {
return reinterpret_cast<PFN_vkVoidFunction>(gapii::vkCreateInstance);
}
if (!strcmp(pName, "vkEnumerateInstanceExtensionProperties")) {
return reinterpret_cast<PFN_vkVoidFunction>(mImports.vkEnumerateInstanceExtensionProperties);
}
return nullptr;
}
PFN_vkVoidFunction VulkanSpy::SpyOverride_vkGetDeviceProcAddr(VkDevice device, const char* pName) {
{{range $c := AllCommands $}}
{{if (Macro "IsIndirected" "Command" $c "IndirectOn" "VkDevice")}}
{{$name := Macro "CmdName" $c}}
if(!strcmp(pName, "{{$name}}"))
{{if eq $name "vkCreateImage"}}
return reinterpret_cast<PFN_vkVoidFunction>(VulkanSpy::CreateImageAndGetMemoryRequirements);
{{else if eq $name "vkCreateBuffer"}}
return reinterpret_cast<PFN_vkVoidFunction>(VulkanSpy::CreateBufferAndGetMemoryRequirements);
{{else}}
return reinterpret_cast<PFN_vkVoidFunction>(gapii::{{$name}});
{{end}}
{{end}}
{{end}}
// This is not strictly correct, but some applications incorrectly
// call vkGetDeviceProcAddr, when they actually mean vkGetInstanceProcAddr.
PFN_vkVoidFunction f = SpyOverride_vkGetInstanceProcAddr(mState.PhysicalDevices[mState.Devices[device]->mPhysicalDevice]->mInstance, pName);
// If we do not support the function as an instance function OR a device function, then defer to the actual device.
// It is likely that this will cause a failure in the future, as we will miss any state
// that is modified by this function, but we avoid modifying the application.
if (!f && device) {
f = mImports.mVkDeviceFunctions[device].vkGetDeviceProcAddr(device, pName);
if (f) {
GAPID_ERROR("Unknown function %s resolved, it may be called but will not be tracked", pName);
}
}
return f;
}
uint32_t VulkanSpy::SpyOverride_vkEnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pCount, VkExtensionProperties *pProperties) {
*pCount = 0;
return VkResult::VK_SUCCESS;
}
uint32_t VulkanSpy::SpyOverride_vkEnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice, const char *pLayerName, uint32_t *pCount, VkExtensionProperties *pProperties) {
//auto next_layer_enumerate_extensions = mImports.mVkInstanceFunctions[mState.PhysicalDevices[physicalDevice]->mInstance].vkEnumerateDeviceExtensionProperties;
gapii::VulkanImports::PFNVKENUMERATEDEVICEEXTENSIONPROPERTIES next_layer_enumerate_extensions = NULL;
auto phy_dev_iter = mState.PhysicalDevices.find(physicalDevice);
if (phy_dev_iter != mState.PhysicalDevices.end()) {
auto inst_func_iter = mImports.mVkInstanceFunctions.find(phy_dev_iter->second->mInstance);
if (inst_func_iter != mImports.mVkInstanceFunctions.end()) {
next_layer_enumerate_extensions = reinterpret_cast<gapii::VulkanImports::PFNVKENUMERATEDEVICEEXTENSIONPROPERTIES>(
inst_func_iter->second.vkEnumerateDeviceExtensionProperties);
}
}
uint32_t next_layer_count = 0;
uint32_t next_layer_result;
if (next_layer_enumerate_extensions) {
next_layer_result = next_layer_enumerate_extensions(physicalDevice, pLayerName, &next_layer_count, NULL);
if (next_layer_result != VkResult::VK_SUCCESS) {
return next_layer_result;
}
}
std::vector<VkExtensionProperties> properties(next_layer_count, VkExtensionProperties{arena()});
//properties.reserve(next_layer_count+1);
if (next_layer_enumerate_extensions) {
next_layer_result = next_layer_enumerate_extensions(physicalDevice, pLayerName, &next_layer_count, properties.data());
if (next_layer_result != VkResult::VK_SUCCESS) {
return next_layer_result;
}
}
bool has_debug_marker_ext = false;
for (VkExtensionProperties& ext : properties) {
// TODO: Check the spec version and emit warning if not match.
// TODO: refer to VK_EXT_DEBUG_MARKER_EXTENSION_NAME
if (!strcmp(ext.mextensionName, "VK_EXT_debug_marker")) {
has_debug_marker_ext = true;
break;
}
}
if (!has_debug_marker_ext) {
// TODO: refer to VK_EXT_DEBUG_MARKER_EXTENSION_NAME and VK_EXT_DEBUG_MARKER_SPEC_VERSION
char debug_marker_extension_name[] = "VK_EXT_debug_marker";
uint32_t debug_marker_spec_version = 4;
properties.emplace_back(VkExtensionProperties{debug_marker_extension_name, debug_marker_spec_version});
}
if (pProperties == NULL) {
*pCount = properties.size();
return VkResult::VK_SUCCESS;
}
uint32_t copy_count = properties.size() < *pCount ? properties.size():*pCount;
memcpy(pProperties, properties.data(), copy_count * sizeof(VkExtensionProperties));
if (*pCount < properties.size()) {
return VkResult::VK_INCOMPLETE;
}
*pCount = properties.size();
return VkResult::VK_SUCCESS;
}
uint32_t VulkanSpy::SpyOverride_vkCreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance) {
VkLayerInstanceCreateInfo *layer_info = get_layer_link_info(pCreateInfo);
// Grab the pointer to the next vkGetInstanceProcAddr in the chain.
gapii::VulkanImports::PFNVKGETINSTANCEPROCADDR get_instance_proc_addr =
layer_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
// From that get the next vkCreateInstance function.
gapii::VulkanImports::PFNVKCREATEINSTANCE create_instance = reinterpret_cast<gapii::VulkanImports::PFNVKCREATEINSTANCE>(
get_instance_proc_addr(0, "vkCreateInstance"));
mImports.pfn_vkCreateInstance = create_instance;
mImports.pfn_vkEnumerateInstanceExtensionProperties \
= reinterpret_cast<gapii::VulkanImports::PFNVKENUMERATEINSTANCEEXTENSIONPROPERTIES>(get_instance_proc_addr(0, "vkEnumerateInstanceExtensionProperties"));
if (create_instance == NULL) {
return VkResult::VK_ERROR_INITIALIZATION_FAILED;
}
// The next layer may read from layer_info,
// so increment the pointer for it.
layer_info->u.pLayerInfo = layer_info->u.pLayerInfo->pNext;
// Actually call vkCreateInstance, and keep track of the result.
uint32_t result = create_instance(pCreateInfo, pAllocator, pInstance);
// Send a header with Vulkan info added if we haven't done so.
const device::Drivers& drivers =
this->SpyBase::device_instance()->configuration().drivers();
bool should_send_header =
// If the has_vulkan() returns false, it means the Vulkan loader is not
// found in the first time we get device instance. However, if this
// vkCreateInstance is called (so we are here), the loader must be
// working now, so we should populate the Vulkan driver info in the
// device::Instance.
(!drivers.has_vulkan()) ||
// If VulkanDriver does present, but is empty, we should populate the
// VulkanDriver and send the new header.
(drivers.vulkan().layers_size() == 0 &&
drivers.vulkan().icdandimplicitlayerextensions_size() == 0 &&
drivers.vulkan().physicaldevices_size() == 0);
if (should_send_header) {
if (query::updateVulkanDriver(SpyBase::device_instance(), *pInstance,
get_instance_proc_addr)) {
SpyBase::writeHeader();
} else {
GAPID_ERROR(
"Cannot update device info with Vulkan physical device info.");
}
}
// If it failed, then we don't need to track this instance.
if (result != VkResult::VK_SUCCESS) return result;
mImports.vkEnumerateInstanceExtensionProperties =
reinterpret_cast<VulkanImports::PFNVKENUMERATEINSTANCEEXTENSIONPROPERTIES>(get_instance_proc_addr(*pInstance, "vkEnumerateInstanceExtensionProperties"));
GAPID_DEBUG("Registering instance functions for %p", *pInstance);
// Add this instance, along with the vkGetInstanceProcAddr to our
// map. This way when someone calls vkGetInstanceProcAddr, we can forward
// it to the correct "next" vkGetInstanceProcAddr.
{
// The same instance was returned twice, this is a problem.
auto insert_pt = mImports.mVkInstanceFunctions.insert({*pInstance, {}});
if (!insert_pt.second) {
// TODO(awoloszyn): Figure out if this is valid. Can an implementation return the same
// instance for all calls to vkCreateInstance.
return VkResult::VK_ERROR_INITIALIZATION_FAILED;
}
{{range $c := AllCommands $}}
{{if (Macro "IsIndirected" "Command" $c "IndirectOn" "VkInstance")}}
{{$name := Macro "CmdName" $c}}
insert_pt.first->second.{{$name}} = reinterpret_cast<gapii::VulkanImports::{{Template "C++.FunctionPtrType" $c}}>(get_instance_proc_addr(*pInstance, "{{$name}}"));
{{end}}
{{end}}
}
return result;
}
void VulkanSpy::SpyOverride_vkDestroyInstance(
VkInstance instance,
const VkAllocationCallbacks* pAllocator) {
// First we have to find the function to chain to, then we have to
// remove this instance from our list, then we forward the call.
auto it = mImports.mVkInstanceFunctions.find(instance);
gapii::VulkanImports::PFNVKDESTROYINSTANCE destroy_instance =
it == mImports.mVkInstanceFunctions.end() ? nullptr :
it->second.vkDestroyInstance;
if (destroy_instance) {
destroy_instance(instance, pAllocator);
}
mImports.mVkInstanceFunctions.erase(mImports.mVkInstanceFunctions.find(instance));
}
uint32_t VulkanSpy::SpyOverride_vkCreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice) {
VkLayerDeviceCreateInfo *layer_info = get_layer_link_info(pCreateInfo);
// Grab the fpGetInstanceProcAddr from the layer_info. We will get
// vkCreateDevice from this.
// Note: we cannot use our instance_map because we do not have a
// vkInstance here.
gapii::VulkanImports::PFNVKGETINSTANCEPROCADDR get_instance_proc_addr =
layer_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
gapii::VulkanImports::PFNVKCREATEDEVICE create_device = reinterpret_cast<gapii::VulkanImports::PFNVKCREATEDEVICE>(
get_instance_proc_addr(0, "vkCreateDevice"));
if (!create_device) {
return VkResult::VK_ERROR_INITIALIZATION_FAILED;
}
// We want to store off the next vkGetDeviceProcAddr so keep track of it now,
// keep track of it now, before we increment the pointer.
gapii::VulkanImports::PFNVKGETDEVICEPROCADDR get_device_proc_addr =
layer_info->u.pLayerInfo->pfnNextGetDeviceProcAddr;
// The next layer may read from layer_info,
// so increment the pointer for it.
layer_info->u.pLayerInfo = layer_info->u.pLayerInfo->pNext;
//// Prepare the enabled extension list for the next layer's vkCreateDevice
auto enumerate_dev_exts = reinterpret_cast<gapii::VulkanImports::PFNVKENUMERATEDEVICEEXTENSIONPROPERTIES>(
mImports.mVkInstanceFunctions[mState.PhysicalDevices[physicalDevice]->mInstance].vkEnumerateDeviceExtensionProperties);
uint32_t extension_count = 0;
uint32_t enumerate_extension_result;
enumerate_extension_result = enumerate_dev_exts(physicalDevice, nullptr, &extension_count, nullptr);
if (enumerate_extension_result != VkResult::VK_SUCCESS) {
return VkResult::VK_ERROR_INITIALIZATION_FAILED;
}
std::vector<VkExtensionProperties> ext_properties;
ext_properties.reserve(extension_count);
enumerate_extension_result = enumerate_dev_exts(physicalDevice, nullptr, &extension_count, ext_properties.data());
if (enumerate_extension_result != VkResult::VK_SUCCESS) {
return VkResult::VK_ERROR_INITIALIZATION_FAILED;
}
std::vector<const char*> extension_names;
for(uint32_t i = 0; i < pCreateInfo->menabledExtensionCount; i++) {
if (strcmp(pCreateInfo->mppEnabledExtensionNames[i], "VK_EXT_debug_marker")) {
extension_names.push_back(pCreateInfo->mppEnabledExtensionNames[i]);
}
}
VkDeviceCreateInfo override_create_info = *pCreateInfo;
override_create_info.mppEnabledExtensionNames = extension_names.data();
override_create_info.menabledExtensionCount = extension_names.size();
// Actually make the call to vkCreateDevice.
uint32_t result = create_device(physicalDevice, &override_create_info, pAllocator, pDevice);
// If we failed, then we don't store the associated pointers.
if (result != VkResult::VK_SUCCESS) {
return result;
}
gapii::VulkanImports::PFNVKDESTROYDEVICE destroy_device = reinterpret_cast<gapii::VulkanImports::PFNVKDESTROYDEVICE>(
get_device_proc_addr(*pDevice, "vkDestroyDevice"));
VkDevice device = *pDevice;
VulkanImports::VkDeviceFunctions* functions = nullptr;
// Add this device, along with the vkGetDeviceProcAddr to our map.
// This way when someone calls vkGetDeviceProcAddr, we can forward
// it to the correct "next" vkGetDeviceProcAddr.
{
auto insert_pt = mImports.mVkDeviceFunctions.insert({*pDevice, {}});
functions = &insert_pt.first->second;
if (!insert_pt.second) {
return VkResult::VK_ERROR_INITIALIZATION_FAILED;
}
{{range $c := AllCommands $}}
{{if (Macro "IsIndirected" "Command" $c "IndirectOn" "VkDevice")}}
{{$name := Macro "CmdName" $c}}
insert_pt.first->second.{{$name}} = reinterpret_cast<gapii::VulkanImports::{{Template "C++.FunctionPtrType" $c}}>(get_device_proc_addr(*pDevice, "{{$name}}"));
{{end}}
{{end}}
}
#if COHERENT_TRACKING_ENABLED
if (!mMemoryTracker.IsInstalled()) {
mMemoryTracker.EnableMemoryTracker();
VkInstance instance = mState.PhysicalDevices[physicalDevice]->mInstance;
auto& instance_functions = mImports.mVkInstanceFunctions[instance];
VkPhysicalDeviceMemoryProperties props(arena());
instance_functions.vkGetPhysicalDeviceMemoryProperties(physicalDevice, &props);
uint32_t coherent_bit = static_cast<uint32_t>(-1);
for (uint32_t i = 0 ; i < props.mmemoryTypeCount; ++i) {
if ((props.mmemoryTypes[i].mpropertyFlags & (
VkMemoryPropertyFlagBits::VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VkMemoryPropertyFlagBits::VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) ==
(VkMemoryPropertyFlagBits::VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VkMemoryPropertyFlagBits::VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) {
coherent_bit = i;
}
}
if (coherent_bit == static_cast<uint32_t>(-1)) {
return VkResult::VK_ERROR_INITIALIZATION_FAILED;
}
uint32_t pagesize = track_memory::GetPageSize();
VkMemoryAllocateInfo a = {
VkStructureType::VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
nullptr,
pagesize,
coherent_bit
};
VkDeviceMemory allocatedMemory;
if (0 != functions->vkAllocateMemory(device, &a, nullptr, &allocatedMemory)) {
return VkResult::VK_ERROR_INITIALIZATION_FAILED;
}
void* pMemory;
functions->vkMapMemory(device, allocatedMemory, 0, pagesize, 0, &pMemory);
mMemoryTracker.AddTrackingRange(pMemory, pagesize);
memset(pMemory, 32, pagesize);
functions->vkFreeMemory(device, allocatedMemory, nullptr);
const auto dirty_pages = mMemoryTracker.GetAndResetDirtyPagesInRange(pMemory, pagesize);
mMemoryTracker.RemoveTrackingRange(pMemory, pagesize);
m_coherent_memory_tracking_enabled = !dirty_pages.empty();
if (!m_coherent_memory_tracking_enabled) {
GAPID_WARNING("Memory tracker requested, but does not work on this system");
GAPID_WARNING("Falling back to non-tracked memory");
}
}
#endif
return result;
}
uint32_t VulkanSpy::SpyOverride_vkCreateBuffer(
VkDevice device,
const VkBufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkBuffer* pBuffer) {
if (is_suspended()) {
VkBufferCreateInfo override_create_info = *pCreateInfo;
override_create_info.musage |=
VkBufferUsageFlagBits::VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
return mImports.mVkDeviceFunctions[device].vkCreateBuffer(
device, &override_create_info, pAllocator, pBuffer);
} else {
return mImports.mVkDeviceFunctions[device].vkCreateBuffer(
device, pCreateInfo, pAllocator, pBuffer);
}
}
uint32_t VulkanSpy::SpyOverride_vkCreateImage(
VkDevice device,
const VkImageCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkImage* pImage) {
if (is_suspended() || is_observing()) {
VkImageCreateInfo override_create_info = *pCreateInfo;
override_create_info.musage |=
VkImageUsageFlagBits::VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
return mImports.mVkDeviceFunctions[device].vkCreateImage(
device, &override_create_info, pAllocator, pImage);
} else {
return mImports.mVkDeviceFunctions[device].vkCreateImage(
device, pCreateInfo, pAllocator, pImage);
}
}
uint32_t VulkanSpy::SpyOverride_vkCreateSwapchainKHR(
VkDevice device,
const VkSwapchainCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSwapchainKHR* pImage) {
if (is_observing() || is_suspended()) {
VkSwapchainCreateInfoKHR override_create_info = *pCreateInfo;
override_create_info.mimageUsage |= VkImageUsageFlagBits::VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
return mImports.mVkDeviceFunctions[device].vkCreateSwapchainKHR(device, &override_create_info, pAllocator, pImage);
} else {
return mImports.mVkDeviceFunctions[device].vkCreateSwapchainKHR(device, pCreateInfo, pAllocator, pImage);
}
}
void VulkanSpy::SpyOverride_vkDestroyDevice(VkDevice device, const VkAllocationCallbacks* pAllocator) {
// First we have to find the function to chain to, then we have to
// remove this instance from our list, then we forward the call.
auto it = mImports.mVkDeviceFunctions.find(device);
gapii::VulkanImports::PFNVKDESTROYDEVICE destroy_device =
it == mImports.mVkDeviceFunctions.end()
? nullptr
: it->second.vkDestroyDevice;
if (destroy_device) {
destroy_device(device, pAllocator);
}
mImports.mVkDeviceFunctions.erase(mImports.mVkDeviceFunctions.find(device));
}
bool VulkanSpy::hasDynamicProperty(
CallObserver* observer,
const VkPipelineDynamicStateCreateInfo* info,
uint32_t state) {
if (!info) { return false; }
for (size_t i = 0; i < info->mdynamicStateCount; ++i) {
if (info->mpDynamicStates[i] == state) {
return true;
}
}
return false;
}
// Externs not implemented in GAPII.
void VulkanSpy::mapMemory(CallObserver*, void**, gapil::Slice<uint8_t>) {}
void VulkanSpy::unmapMemory(CallObserver*, gapil::Slice<uint8_t>) {}
void VulkanSpy::resetCmd(CallObserver* observer, VkCommandBuffer cmdBuf) {
}
void VulkanSpy::trackMappedCoherentMemory(CallObserver*, uint64_t start, size_val size) {
// If the tracing not started yet, do not track the coherent memory
if (is_suspended()) {
return;
}
#if COHERENT_TRACKING_ENABLED
if (m_coherent_memory_tracking_enabled) {
void* start_addr = reinterpret_cast<void*>(start);
mMemoryTracker.AddTrackingRange(start_addr, size);
}
#endif // COHERENT_TRACKING_ENABLED
}
void VulkanSpy::readMappedCoherentMemory(CallObserver *observer, VkDeviceMemory memory, uint64_t offset_in_mapped, size_val readSize) {
auto &memory_object = mState.DeviceMemories[memory];
const auto mapped_size = memory_object->mMappedSize;
const auto mapped_location = (uint64_t)(memory_object->mMappedLocation);
void *offset_addr = (void *)(offset_in_mapped + mapped_location);
#if COHERENT_TRACKING_ENABLED
if (m_coherent_memory_tracking_enabled) {
const size_val page_size = mMemoryTracker.page_size();
// Get the valid mapped range
const auto dirty_pages = mMemoryTracker.GetAndResetDirtyPagesInRange(offset_addr, readSize);
for (const void *p : dirty_pages) {
uint64_t page_start = (uint64_t)(p);
uint64_t page_end = page_start + page_size;
observer->read(slice((uint8_t *)page_start, 0ULL, page_size));
}
return;
}
#endif // COHERENT_TRACKING_ENABLED
observer->read(slice((uint8_t *)offset_addr, 0ULL, readSize));
}
void VulkanSpy::untrackMappedCoherentMemory(CallObserver*, uint64_t start, size_val size) {
#if COHERENT_TRACKING_ENABLED
if (m_coherent_memory_tracking_enabled) {
void* start_addr = reinterpret_cast<void*>(start);
mMemoryTracker.RemoveTrackingRange(start_addr, size);
}
#endif // COHERENT_TRACKING_ENABLED
}
uint32_t VulkanSpy::SpyOverride_vkAllocateMemory(
VkDevice device,
const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator,
VkDeviceMemory* pMemory) {
uint32_t r = mImports.mVkDeviceFunctions[device].vkAllocateMemory(device, pAllocateInfo, pAllocator, pMemory);
auto l_physical_device = mState.PhysicalDevices[mState.Devices[device]->mPhysicalDevice];
if (0 != (l_physical_device->mMemoryProperties.mmemoryTypes[pAllocateInfo->mmemoryTypeIndex].mpropertyFlags &
((uint32_t)(VkMemoryPropertyFlagBits::VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)))) {
// This is host-coherent memory. Some drivers actually allocate these pages on-demand.
// This forces all of the pages to be created.
// This is needed as our coherent memory tracker relies on page-faults which interferes with the
// on-demand allocation.
char* memory;
mImports.mVkDeviceFunctions[device].vkMapMemory(device, *pMemory, 0, pAllocateInfo->mallocationSize, 0, reinterpret_cast<void**>(&memory));
memset(memory, 0x00, pAllocateInfo->mallocationSize);
mImports.mVkDeviceFunctions[device].vkUnmapMemory(device, *pMemory);
}
return r;
}
uint32_t VulkanSpy::numberOfPNext(CallObserver* observer, const void* pNext) {
uint32_t counter = 0;
while (pNext) {
counter++;
pNext = reinterpret_cast<const void*>(reinterpret_cast<const uintptr_t*>(pNext)[1]);
}
return counter;
}
void VulkanSpy::pushDebugMarker(CallObserver*, std::string) {}
void VulkanSpy::popDebugMarker(CallObserver*) {}
void VulkanSpy::pushRenderPassMarker(CallObserver*, VkRenderPass) {}
void VulkanSpy::popRenderPassMarker(CallObserver*) {}
void VulkanSpy::popAndPushMarkerForNextSubpass(CallObserver*, uint32_t) {}
uint32_t VulkanSpy::CreateImageAndGetMemoryRequirements(
VkDevice device,
const VkImageCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkImage* pImage) {
core::Arena arena;
uint32_t result =
gapii::vkCreateImage(device, pCreateInfo, pAllocator, pImage);
if (result == gapii::VkResult::VK_SUCCESS) {
gapii::VkMemoryRequirements mem_req{&arena};
gapii::vkGetImageMemoryRequirements(device, *pImage, &mem_req);
if ((pCreateInfo->mflags &
VkImageCreateFlagBits::VK_IMAGE_CREATE_SPARSE_BINDING_BIT) != 0) {
uint32_t sparse_mem_req_count = 0;
gapii::vkGetImageSparseMemoryRequirements(device, *pImage,
&sparse_mem_req_count, nullptr);
std::vector<VkSparseImageMemoryRequirements> sparse_mem_reqs(
sparse_mem_req_count, VkSparseImageMemoryRequirements{&arena});
gapii::vkGetImageSparseMemoryRequirements(
device, *pImage, &sparse_mem_req_count, sparse_mem_reqs.data());
}
}
return result;
}
uint32_t VulkanSpy::CreateBufferAndGetMemoryRequirements(
VkDevice device,
const VkBufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkBuffer* pBuffer) {
core::Arena arena;
uint32_t result =
gapii::vkCreateBuffer(device, pCreateInfo, pAllocator, pBuffer);
if (result == gapii::VkResult::VK_SUCCESS) {
gapii::VkMemoryRequirements mem_req{&arena};
gapii::vkGetBufferMemoryRequirements(device, *pBuffer, &mem_req);
}
return result;
}
uint32_t VulkanSpy::EnumeratePhysicalDevicesAndCacheProperties(
VkInstance instance, uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices) {
core::Arena arena;
uint32_t result = gapii::vkEnumeratePhysicalDevices(
instance, pPhysicalDeviceCount, pPhysicalDevices);
if ((result == gapii::VkResult::VK_SUCCESS) &&
(pPhysicalDevices != nullptr)) {
uint32_t dev_count = *pPhysicalDeviceCount;
std::vector<VkPhysicalDevice> devs(pPhysicalDevices,
pPhysicalDevices + dev_count);
for (VkPhysicalDevice dev : devs) {
gapii::VkPhysicalDeviceProperties dev_prop{&arena};
gapii::vkGetPhysicalDeviceProperties(dev, &dev_prop);
uint32_t queue_family_count = 0;
gapii::vkGetPhysicalDeviceQueueFamilyProperties(dev, &queue_family_count,
nullptr);
std::vector<VkQueueFamilyProperties> queue_family_props(
queue_family_count, VkQueueFamilyProperties{&arena});
gapii::vkGetPhysicalDeviceQueueFamilyProperties(
dev, &queue_family_count, queue_family_props.data());
}
}
return result;
}
}
{{end}}