@@ -61,11 +61,11 @@ def create_orders_df(
61
61
df ["order_is_success" ] = np .random .randint (0 , 2 , size = order_count ).astype (np .int32 )
62
62
df [DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL ] = [
63
63
_convert_event_timestamp (
64
- pd .Timestamp (dt , unit = "ms" , tz = "UTC" ).round ("ms" ),
64
+ pd .Timestamp (dt , unit = "ms" ).round ("ms" ),
65
65
EventTimestampType (idx % 4 ),
66
66
)
67
67
for idx , dt in enumerate (
68
- pd .date_range (start = start_date , end = end_date , periods = order_count )
68
+ pd .date_range (start = start_date , end = end_date , periods = order_count , tz = "UTC" )
69
69
)
70
70
]
71
71
df .sort_values (
@@ -101,9 +101,13 @@ def create_driver_hourly_stats_df(drivers, start_date, end_date) -> pd.DataFrame
101
101
df_hourly = pd .DataFrame (
102
102
{
103
103
"event_timestamp" : [
104
- pd .Timestamp (dt , unit = "ms" , tz = "UTC" ).round ("ms" )
104
+ pd .Timestamp (dt , unit = "ms" ).round ("ms" )
105
105
for dt in pd .date_range (
106
- start = start_date , end = end_date , freq = "1h" , inclusive = "left"
106
+ start = start_date ,
107
+ end = end_date ,
108
+ freq = "1h" ,
109
+ inclusive = "left" ,
110
+ tz = "UTC" ,
107
111
)
108
112
]
109
113
# include a fixed timestamp for get_historical_features in the quickstart
@@ -162,9 +166,13 @@ def create_customer_daily_profile_df(customers, start_date, end_date) -> pd.Data
162
166
df_daily = pd .DataFrame (
163
167
{
164
168
"event_timestamp" : [
165
- pd .Timestamp (dt , unit = "ms" , tz = "UTC" ).round ("ms" )
169
+ pd .Timestamp (dt , unit = "ms" ).round ("ms" )
166
170
for dt in pd .date_range (
167
- start = start_date , end = end_date , freq = "1D" , inclusive = "left"
171
+ start = start_date ,
172
+ end = end_date ,
173
+ freq = "1D" ,
174
+ inclusive = "left" ,
175
+ tz = "UTC" ,
168
176
)
169
177
]
170
178
}
@@ -207,9 +215,13 @@ def create_location_stats_df(locations, start_date, end_date) -> pd.DataFrame:
207
215
df_hourly = pd .DataFrame (
208
216
{
209
217
"event_timestamp" : [
210
- pd .Timestamp (dt , unit = "ms" , tz = "UTC" ).round ("ms" )
218
+ pd .Timestamp (dt , unit = "ms" ).round ("ms" )
211
219
for dt in pd .date_range (
212
- start = start_date , end = end_date , freq = "1h" , inclusive = "left"
220
+ start = start_date ,
221
+ end = end_date ,
222
+ freq = "1h" ,
223
+ inclusive = "left" ,
224
+ tz = "UTC" ,
213
225
)
214
226
]
215
227
}
@@ -254,9 +266,16 @@ def create_global_daily_stats_df(start_date, end_date) -> pd.DataFrame:
254
266
df_daily = pd .DataFrame (
255
267
{
256
268
"event_timestamp" : [
257
- pd .Timestamp (dt , unit = "ms" , tz = "UTC" ).round ("ms" )
269
+ pd .Timestamp (
270
+ dt ,
271
+ unit = "ms" ,
272
+ ).round ("ms" )
258
273
for dt in pd .date_range (
259
- start = start_date , end = end_date , freq = "1D" , inclusive = "left"
274
+ start = start_date ,
275
+ end = end_date ,
276
+ freq = "1D" ,
277
+ inclusive = "left" ,
278
+ tz = "UTC" ,
260
279
)
261
280
]
262
281
}
@@ -286,11 +305,11 @@ def create_field_mapping_df(start_date, end_date) -> pd.DataFrame:
286
305
df ["column_name" ] = np .random .randint (1 , 100 , size = size ).astype (np .int32 )
287
306
df [DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL ] = [
288
307
_convert_event_timestamp (
289
- pd .Timestamp (dt , unit = "ms" , tz = "UTC" ).round ("ms" ),
308
+ pd .Timestamp (dt , unit = "ms" ).round ("ms" ),
290
309
EventTimestampType (idx % 4 ),
291
310
)
292
311
for idx , dt in enumerate (
293
- pd .date_range (start = start_date , end = end_date , periods = size )
312
+ pd .date_range (start = start_date , end = end_date , periods = size , tz = "UTC" )
294
313
)
295
314
]
296
315
df ["created" ] = pd .to_datetime (pd .Timestamp .now (tz = None ).round ("ms" ))
0 commit comments