forked from Qiskit/qiskit
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_controlled_gate.py
1753 lines (1507 loc) · 69.2 KB
/
test_controlled_gate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This code is part of Qiskit.
#
# (C) Copyright IBM 2019, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test Qiskit's controlled gate operation."""
import unittest
import numpy as np
from numpy import pi
from ddt import ddt, data, unpack
from qiskit import QuantumRegister, QuantumCircuit, QiskitError
from qiskit.circuit import ControlledGate, Parameter, Gate
from qiskit.circuit.annotated_operation import AnnotatedOperation
from qiskit.circuit.singleton import SingletonControlledGate, _SingletonControlledGateOverrides
from qiskit.circuit.exceptions import CircuitError
from qiskit.quantum_info.operators.predicates import matrix_equal, is_unitary_matrix
from qiskit.quantum_info.random import random_unitary
from qiskit.quantum_info.states import Statevector
import qiskit.circuit.add_control as ac
from qiskit.transpiler.passes import UnrollCustomDefinitions, BasisTranslator
from qiskit.converters.circuit_to_dag import circuit_to_dag
from qiskit.converters.dag_to_circuit import dag_to_circuit
from qiskit.quantum_info import Operator
from qiskit.circuit.library import (
CXGate,
XGate,
YGate,
ZGate,
U1Gate,
CYGate,
CZGate,
CU1Gate,
SwapGate,
PhaseGate,
CCXGate,
HGate,
RZGate,
RXGate,
CPhaseGate,
RYGate,
CRYGate,
CRXGate,
CSwapGate,
UGate,
U3Gate,
CHGate,
CRZGate,
CU3Gate,
CUGate,
SXGate,
CSXGate,
MSGate,
Barrier,
RCCXGate,
RC3XGate,
MCU1Gate,
MCXGate,
MCXGrayCode,
MCXRecursive,
MCXVChain,
C3XGate,
C3SXGate,
C4XGate,
MCPhaseGate,
GlobalPhaseGate,
UnitaryGate,
)
from qiskit.circuit._utils import _compute_control_matrix
import qiskit.circuit.library.standard_gates as allGates
from qiskit.circuit.library.standard_gates.multi_control_rotation_gates import _mcsu2_real_diagonal
from qiskit.circuit.library.standard_gates.equivalence_library import (
StandardEquivalenceLibrary as std_eqlib,
)
from test import combine # pylint: disable=wrong-import-order
from test import QiskitTestCase # pylint: disable=wrong-import-order
from .gate_utils import _get_free_params
@ddt
class TestControlledGate(QiskitTestCase):
"""Tests for controlled gates and the ControlledGate class."""
def test_controlled_x(self):
"""Test creation of controlled x gate"""
self.assertEqual(XGate().control(), CXGate())
def test_controlled_y(self):
"""Test creation of controlled y gate"""
self.assertEqual(YGate().control(), CYGate())
def test_controlled_z(self):
"""Test creation of controlled z gate"""
self.assertEqual(ZGate().control(), CZGate())
def test_controlled_h(self):
"""Test the creation of a controlled H gate."""
self.assertEqual(HGate().control(), CHGate())
def test_controlled_phase(self):
"""Test the creation of a controlled U1 gate."""
theta = 0.5
self.assertEqual(PhaseGate(theta).control(), CPhaseGate(theta))
def test_double_controlled_phase(self):
"""Test the creation of a controlled phase gate."""
theta = 0.5
self.assertEqual(PhaseGate(theta).control(2), MCPhaseGate(theta, 2))
def test_controlled_u1(self):
"""Test the creation of a controlled U1 gate."""
theta = 0.5
self.assertEqual(U1Gate(theta).control(), CU1Gate(theta))
circ = QuantumCircuit(1)
circ.append(U1Gate(theta), circ.qregs[0])
unroller = UnrollCustomDefinitions(std_eqlib, ["cx", "u", "p"])
basis_translator = BasisTranslator(std_eqlib, ["cx", "u", "p"])
ctrl_circ_gate = dag_to_circuit(
basis_translator.run(unroller.run(circuit_to_dag(circ)))
).control()
ctrl_circ = QuantumCircuit(2)
ctrl_circ.append(ctrl_circ_gate, ctrl_circ.qregs[0])
ctrl_circ = ctrl_circ.decompose().decompose()
self.assertEqual(ctrl_circ.size(), 1)
def test_controlled_rz(self):
"""Test the creation of a controlled RZ gate."""
theta = 0.5
self.assertEqual(RZGate(theta).control(), CRZGate(theta))
def test_control_parameters(self):
"""Test different ctrl_state formats for control function."""
theta = 0.5
self.assertEqual(
CRYGate(theta).control(2, ctrl_state="01"), CRYGate(theta).control(2, ctrl_state=1)
)
self.assertEqual(
CRYGate(theta).control(2, ctrl_state=None), CRYGate(theta).control(2, ctrl_state=3)
)
self.assertEqual(CCXGate().control(2, ctrl_state="01"), CCXGate().control(2, ctrl_state=1))
self.assertEqual(CCXGate().control(2, ctrl_state=None), CCXGate().control(2, ctrl_state=3))
def test_controlled_ry(self):
"""Test the creation of a controlled RY gate."""
theta = 0.5
self.assertEqual(RYGate(theta).control(), CRYGate(theta))
def test_controlled_rx(self):
"""Test the creation of a controlled RX gate."""
theta = 0.5
self.assertEqual(RXGate(theta).control(), CRXGate(theta))
def test_controlled_u(self):
"""Test the creation of a controlled U gate."""
theta, phi, lamb = 0.1, 0.2, 0.3
self.assertEqual(UGate(theta, phi, lamb).control(), CUGate(theta, phi, lamb, 0))
def test_controlled_u3(self):
"""Test the creation of a controlled U3 gate."""
theta, phi, lamb = 0.1, 0.2, 0.3
self.assertEqual(U3Gate(theta, phi, lamb).control(), CU3Gate(theta, phi, lamb))
circ = QuantumCircuit(1)
circ.append(U3Gate(theta, phi, lamb), circ.qregs[0])
unroller = UnrollCustomDefinitions(std_eqlib, ["cx", "u", "p"])
basis_translator = BasisTranslator(std_eqlib, ["cx", "u", "p"])
ctrl_circ_gate = dag_to_circuit(
basis_translator.run(unroller.run(circuit_to_dag(circ)))
).control()
ctrl_circ = QuantumCircuit(2)
ctrl_circ.append(ctrl_circ_gate, ctrl_circ.qregs[0])
ctrl_circ = ctrl_circ.decompose().decompose()
self.assertEqual(ctrl_circ.size(), 1)
def test_controlled_cx(self):
"""Test creation of controlled cx gate"""
self.assertEqual(CXGate().control(), CCXGate())
def test_controlled_swap(self):
"""Test creation of controlled swap gate"""
self.assertEqual(SwapGate().control(), CSwapGate())
def test_special_cases_equivalent_to_controlled_base_gate(self):
"""Test that ``ControlledGate`` subclasses for more efficient representations give
equivalent matrices and definitions to the naive ``base_gate.control(n)``."""
# Angles used here are not important, we just pick slightly strange values to ensure that
# there are no coincidental equivalences.
tests = [
(CXGate(), 1),
(CCXGate(), 2),
(C3XGate(), 3),
(C4XGate(), 4),
(MCXGate(5), 5),
(CYGate(), 1),
(CZGate(), 1),
(CPhaseGate(np.pi / 7), 1),
(MCPhaseGate(np.pi / 7, 2), 2),
(CSwapGate(), 1),
(CSXGate(), 1),
(C3SXGate(), 3),
(CHGate(), 1),
(CU1Gate(np.pi / 7), 1),
(MCU1Gate(np.pi / 7, 2), 2),
# `CUGate` takes an extra "global" phase parameter compared to `UGate`, and consequently
# is only equal to `base_gate.control()` when this extra phase is 0.
(CUGate(np.pi / 7, np.pi / 5, np.pi / 3, 0), 1),
(CU3Gate(np.pi / 7, np.pi / 5, np.pi / 3), 1),
(CRXGate(np.pi / 7), 1),
(CRYGate(np.pi / 7), 1),
(CRZGate(np.pi / 7), 1),
]
for special_case_gate, n_controls in tests:
with self.subTest(gate=special_case_gate.name):
naive_operator = Operator(special_case_gate.base_gate.control(n_controls))
# Ensure that both the array form (if the gate overrides `__array__`) and the
# circuit-definition form are tested.
self.assertTrue(Operator(special_case_gate).equiv(naive_operator))
if not isinstance(special_case_gate, CXGate):
# CX is treated like a primitive within Terra, and doesn't have a definition.
self.assertTrue(Operator(special_case_gate.definition).equiv(naive_operator))
def test_global_phase_control(self):
"""Test creation of a GlobalPhaseGate."""
base = GlobalPhaseGate(np.pi / 7)
expected_1q = PhaseGate(np.pi / 7)
self.assertEqual(Operator(base.control()), Operator(expected_1q))
expected_2q = PhaseGate(np.pi / 7).control()
self.assertEqual(Operator(base.control(2)), Operator(expected_2q))
expected_open = QuantumCircuit(1)
expected_open.x(0)
expected_open.p(np.pi / 7, 0)
expected_open.x(0)
self.assertEqual(Operator(base.control(ctrl_state=0)), Operator(expected_open))
def test_circuit_append(self):
"""Test appending a controlled gate to a quantum circuit."""
circ = QuantumCircuit(5)
inst = CXGate()
circ.append(inst.control(), qargs=[0, 2, 1])
circ.append(inst.control(2), qargs=[0, 3, 1, 2])
circ.append(inst.control().control(), qargs=[0, 3, 1, 2]) # should be same as above
self.assertEqual(circ[1].operation, circ[2].operation)
self.assertEqual(circ.depth(), 3)
self.assertEqual(circ[0].operation.num_ctrl_qubits, 2)
self.assertEqual(circ[1].operation.num_ctrl_qubits, 3)
self.assertEqual(circ[2].operation.num_ctrl_qubits, 3)
self.assertEqual(circ[0].operation.num_qubits, 3)
self.assertEqual(circ[1].operation.num_qubits, 4)
self.assertEqual(circ[2].operation.num_qubits, 4)
for instr in circ:
self.assertTrue(isinstance(instr.operation, ControlledGate))
def test_swap_definition_specification(self):
"""Test the instantiation of a controlled swap gate with explicit definition."""
swap = SwapGate()
cswap = ControlledGate(
"cswap", 3, [], num_ctrl_qubits=1, definition=swap.definition, base_gate=swap
)
self.assertEqual(swap.definition, cswap.definition)
def test_multi_controlled_composite_gate(self):
"""Test a multi controlled composite gate."""
num_ctrl = 3
# create composite gate
sub_q = QuantumRegister(2)
cgate = QuantumCircuit(sub_q, name="cgate")
cgate.h(sub_q[0])
cgate.crz(pi / 2, sub_q[0], sub_q[1])
cgate.swap(sub_q[0], sub_q[1])
cgate.u(0.1, 0.2, 0.3, sub_q[1])
cgate.t(sub_q[0])
num_target = cgate.width()
gate = cgate.to_gate()
cont_gate = gate.control(num_ctrl_qubits=num_ctrl)
control = QuantumRegister(num_ctrl)
target = QuantumRegister(num_target)
qc = QuantumCircuit(control, target)
qc.append(cont_gate, control[:] + target[:])
op_mat = Operator(cgate).data
cop_mat = _compute_control_matrix(op_mat, num_ctrl)
ref_mat = Operator(qc).data
self.assertTrue(matrix_equal(cop_mat, ref_mat))
def test_single_controlled_composite_gate(self):
"""Test a singly controlled composite gate."""
num_ctrl = 1
# create composite gate
sub_q = QuantumRegister(2)
cgate = QuantumCircuit(sub_q, name="cgate")
cgate.h(sub_q[0])
cgate.cx(sub_q[0], sub_q[1])
num_target = cgate.width()
gate = cgate.to_gate()
cont_gate = gate.control(num_ctrl_qubits=num_ctrl)
control = QuantumRegister(num_ctrl, "control")
target = QuantumRegister(num_target, "target")
qc = QuantumCircuit(control, target)
qc.append(cont_gate, control[:] + target[:])
op_mat = Operator(cgate).data
cop_mat = _compute_control_matrix(op_mat, num_ctrl)
ref_mat = Operator(qc).data
self.assertTrue(matrix_equal(cop_mat, ref_mat))
def test_control_open_controlled_gate(self):
"""Test control(2) vs control.control where inner gate has open controls."""
gate1pre = ZGate().control(1, ctrl_state=0)
gate1 = gate1pre.control(1, ctrl_state=1)
gate2 = ZGate().control(2, ctrl_state=1)
expected = Operator(_compute_control_matrix(ZGate().to_matrix(), 2, ctrl_state=1))
self.assertEqual(expected, Operator(gate1))
self.assertEqual(expected, Operator(gate2))
def test_multi_control_z(self):
"""Test a multi controlled Z gate."""
qc = QuantumCircuit(1)
qc.z(0)
ctr_gate = qc.to_gate().control(2)
ctr_circ = QuantumCircuit(3)
ctr_circ.append(ctr_gate, range(3))
ref_circ = QuantumCircuit(3)
ref_circ.h(2)
ref_circ.ccx(0, 1, 2)
ref_circ.h(2)
self.assertEqual(ctr_circ.decompose(), ref_circ)
def test_multi_control_u3(self):
"""Test the matrix representation of the controlled and controlled-controlled U3 gate."""
from qiskit.circuit.library.standard_gates import u3
num_ctrl = 3
# U3 gate params
alpha, beta, gamma = 0.2, 0.3, 0.4
u3gate = u3.U3Gate(alpha, beta, gamma)
cu3gate = u3.CU3Gate(alpha, beta, gamma)
# cnu3 gate
cnu3 = u3gate.control(num_ctrl)
width = cnu3.num_qubits
qr = QuantumRegister(width)
qcnu3 = QuantumCircuit(qr)
qcnu3.append(cnu3, qr, [])
# U3 gate
qu3 = QuantumCircuit(1)
qu3.append(u3gate, [0])
# CU3 gate
qcu3 = QuantumCircuit(2)
qcu3.append(cu3gate, [0, 1])
# c-cu3 gate
width = 3
qr = QuantumRegister(width)
qc_cu3 = QuantumCircuit(qr)
c_cu3 = cu3gate.control(1)
qc_cu3.append(c_cu3, qr, [])
# Circuit unitaries
mat_cnu3 = Operator(qcnu3).data
mat_u3 = Operator(qu3).data
mat_cu3 = Operator(qcu3).data
mat_c_cu3 = Operator(qc_cu3).data
# Target Controlled-U3 unitary
target_cnu3 = _compute_control_matrix(mat_u3, num_ctrl)
target_cu3 = np.kron(mat_u3, np.diag([0, 1])) + np.kron(np.eye(2), np.diag([1, 0]))
target_c_cu3 = np.kron(mat_cu3, np.diag([0, 1])) + np.kron(np.eye(4), np.diag([1, 0]))
tests = [
("check unitary of u3.control against tensored unitary of u3", target_cu3, mat_cu3),
(
"check unitary of cu3.control against tensored unitary of cu3",
target_c_cu3,
mat_c_cu3,
),
("check unitary of cnu3 against tensored unitary of u3", target_cnu3, mat_cnu3),
]
for itest in tests:
info, target, decomp = itest[0], itest[1], itest[2]
with self.subTest(i=info):
self.assertTrue(matrix_equal(target, decomp, atol=1e-8, rtol=1e-5))
def test_multi_control_u1(self):
"""Test the matrix representation of the controlled and controlled-controlled U1 gate."""
from qiskit.circuit.library.standard_gates import u1
num_ctrl = 3
# U1 gate params
theta = 0.2
u1gate = u1.U1Gate(theta)
cu1gate = u1.CU1Gate(theta)
# cnu1 gate
cnu1 = u1gate.control(num_ctrl)
width = cnu1.num_qubits
qr = QuantumRegister(width)
qcnu1 = QuantumCircuit(qr)
qcnu1.append(cnu1, qr, [])
# U1 gate
qu1 = QuantumCircuit(1)
qu1.append(u1gate, [0])
# CU1 gate
qcu1 = QuantumCircuit(2)
qcu1.append(cu1gate, [0, 1])
# c-cu1 gate
width = 3
qr = QuantumRegister(width)
qc_cu1 = QuantumCircuit(qr)
c_cu1 = cu1gate.control(1)
qc_cu1.append(c_cu1, qr, [])
# Circuit unitaries
mat_cnu1 = Operator(qcnu1).data
# trace out ancillae
mat_u1 = Operator(qu1).data
mat_cu1 = Operator(qcu1).data
mat_c_cu1 = Operator(qc_cu1).data
# Target Controlled-U1 unitary
target_cnu1 = _compute_control_matrix(mat_u1, num_ctrl)
target_cu1 = np.kron(mat_u1, np.diag([0, 1])) + np.kron(np.eye(2), np.diag([1, 0]))
target_c_cu1 = np.kron(mat_cu1, np.diag([0, 1])) + np.kron(np.eye(4), np.diag([1, 0]))
tests = [
("check unitary of u1.control against tensored unitary of u1", target_cu1, mat_cu1),
(
"check unitary of cu1.control against tensored unitary of cu1",
target_c_cu1,
mat_c_cu1,
),
("check unitary of cnu1 against tensored unitary of u1", target_cnu1, mat_cnu1),
]
for itest in tests:
info, target, decomp = itest[0], itest[1], itest[2]
with self.subTest(i=info):
self.log.info(info)
self.assertTrue(matrix_equal(target, decomp))
@data(1, 2, 3, 4)
def test_multi_controlled_u1_matrix(self, num_controls):
"""Test the matrix representation of the multi-controlled CU1 gate.
Based on the test moved here from Aqua:
https://github.com/Qiskit/qiskit-aqua/blob/769ca8f/test/aqua/test_mcu1.py
"""
# registers for the circuit
q_controls = QuantumRegister(num_controls)
q_target = QuantumRegister(1)
# iterate over all possible combinations of control qubits
for ctrl_state in range(2**num_controls):
bitstr = bin(ctrl_state)[2:].zfill(num_controls)[::-1]
lam = 0.3165354 * pi
qc = QuantumCircuit(q_controls, q_target)
for idx, bit in enumerate(bitstr):
if bit == "0":
qc.x(q_controls[idx])
qc.mcp(lam, q_controls, q_target[0])
# for idx in subset:
for idx, bit in enumerate(bitstr):
if bit == "0":
qc.x(q_controls[idx])
simulated = Operator(qc)
base = PhaseGate(lam).to_matrix()
expected = _compute_control_matrix(base, num_controls, ctrl_state=ctrl_state)
with self.subTest(msg=f"control state = {ctrl_state}"):
self.assertTrue(matrix_equal(simulated, expected))
@data(1, 2, 3, 4)
def test_multi_control_toffoli_matrix_clean_ancillas(self, num_controls):
"""Test the multi-control Toffoli gate with clean ancillas.
Based on the test moved here from Aqua:
https://github.com/Qiskit/qiskit-aqua/blob/769ca8f/test/aqua/test_mct.py
"""
# set up circuit
q_controls = QuantumRegister(num_controls)
q_target = QuantumRegister(1)
qc = QuantumCircuit(q_controls, q_target)
if num_controls > 2:
num_ancillas = num_controls - 2
q_ancillas = QuantumRegister(num_controls)
qc.add_register(q_ancillas)
else:
num_ancillas = 0
q_ancillas = None
# apply hadamard on control qubits and toffoli gate
qc.mcx(q_controls, q_target[0], q_ancillas, mode="basic")
# obtain unitary for circuit
simulated = Operator(qc).data
# compare to expectation
if num_ancillas > 0:
simulated = simulated[: 2 ** (num_controls + 1), : 2 ** (num_controls + 1)]
base = XGate().to_matrix()
expected = _compute_control_matrix(base, num_controls)
self.assertTrue(matrix_equal(simulated, expected))
@data(1, 2, 3, 4, 5)
def test_multi_control_toffoli_matrix_basic_dirty_ancillas(self, num_controls):
"""Test the multi-control Toffoli gate with dirty ancillas (basic-dirty-ancilla).
Based on the test moved here from Aqua:
https://github.com/Qiskit/qiskit-aqua/blob/769ca8f/test/aqua/test_mct.py
"""
q_controls = QuantumRegister(num_controls)
q_target = QuantumRegister(1)
qc = QuantumCircuit(q_controls, q_target)
q_ancillas = None
if num_controls <= 2:
num_ancillas = 0
else:
num_ancillas = num_controls - 2
q_ancillas = QuantumRegister(num_ancillas)
qc.add_register(q_ancillas)
qc.mcx(q_controls, q_target[0], q_ancillas, mode="basic-dirty-ancilla")
simulated = Operator(qc).data
if num_ancillas > 0:
simulated = simulated[: 2 ** (num_controls + 1), : 2 ** (num_controls + 1)]
base = XGate().to_matrix()
expected = _compute_control_matrix(base, num_controls)
self.assertTrue(matrix_equal(simulated, expected, atol=1e-8))
@data(1, 2, 3, 4, 5)
def test_multi_control_toffoli_matrix_advanced_dirty_ancillas(self, num_controls):
"""Test the multi-control Toffoli gate with dirty ancillas (advanced).
Based on the test moved here from Aqua:
https://github.com/Qiskit/qiskit-aqua/blob/769ca8f/test/aqua/test_mct.py
"""
q_controls = QuantumRegister(num_controls)
q_target = QuantumRegister(1)
qc = QuantumCircuit(q_controls, q_target)
q_ancillas = None
if num_controls <= 4:
num_ancillas = 0
else:
num_ancillas = 1
q_ancillas = QuantumRegister(num_ancillas)
qc.add_register(q_ancillas)
qc.mcx(q_controls, q_target[0], q_ancillas, mode="advanced")
simulated = Operator(qc).data
if num_ancillas > 0:
simulated = simulated[: 2 ** (num_controls + 1), : 2 ** (num_controls + 1)]
base = XGate().to_matrix()
expected = _compute_control_matrix(base, num_controls)
self.assertTrue(matrix_equal(simulated, expected, atol=1e-8))
@data(1, 2, 3)
def test_multi_control_toffoli_matrix_noancilla_dirty_ancillas(self, num_controls):
"""Test the multi-control Toffoli gate with dirty ancillas (noancilla).
Based on the test moved here from Aqua:
https://github.com/Qiskit/qiskit-aqua/blob/769ca8f/test/aqua/test_mct.py
"""
q_controls = QuantumRegister(num_controls)
q_target = QuantumRegister(1)
qc = QuantumCircuit(q_controls, q_target)
qc.mcx(q_controls, q_target[0], None, mode="noancilla")
simulated = Operator(qc)
base = XGate().to_matrix()
expected = _compute_control_matrix(base, num_controls)
self.assertTrue(matrix_equal(simulated, expected, atol=1e-8))
def test_mcsu2_real_diagonal(self):
"""Test mcsu2_real_diagonal"""
num_ctrls = 6
theta = 0.3
ry_matrix = RYGate(theta).to_matrix()
qc = _mcsu2_real_diagonal(ry_matrix, num_ctrls)
mcry_matrix = _compute_control_matrix(ry_matrix, 6)
self.assertTrue(np.allclose(mcry_matrix, Operator(qc).to_matrix()))
@combine(num_controls=[1, 2, 4], base_gate_name=["x", "y", "z"], use_basis_gates=[True, False])
def test_multi_controlled_rotation_gate_matrices(
self, num_controls, base_gate_name, use_basis_gates
):
"""Test the multi controlled rotation gates without ancillas.
Based on the test moved here from Aqua:
https://github.com/Qiskit/qiskit-aqua/blob/769ca8f/test/aqua/test_mcr.py
"""
q_controls = QuantumRegister(num_controls)
q_target = QuantumRegister(1)
# iterate over all possible combinations of control qubits
for ctrl_state in range(2**num_controls):
bitstr = bin(ctrl_state)[2:].zfill(num_controls)[::-1]
theta = 0.871236 * pi
qc = QuantumCircuit(q_controls, q_target)
for idx, bit in enumerate(bitstr):
if bit == "0":
qc.x(q_controls[idx])
# call mcrx/mcry/mcrz
if base_gate_name == "y":
qc.mcry(
theta,
q_controls,
q_target[0],
None,
mode="noancilla",
use_basis_gates=use_basis_gates,
)
else: # case 'x' or 'z' only support the noancilla mode and do not have this keyword
getattr(qc, "mcr" + base_gate_name)(
theta, q_controls, q_target[0], use_basis_gates=use_basis_gates
)
for idx, bit in enumerate(bitstr):
if bit == "0":
qc.x(q_controls[idx])
if use_basis_gates:
with self.subTest(msg="check only basis gates used"):
gates_used = set(qc.count_ops().keys())
self.assertTrue(gates_used.issubset({"x", "u", "p", "cx"}))
simulated = Operator(qc)
if base_gate_name == "x":
rot_mat = RXGate(theta).to_matrix()
elif base_gate_name == "y":
rot_mat = RYGate(theta).to_matrix()
else: # case 'z'
rot_mat = RZGate(theta).to_matrix()
expected = _compute_control_matrix(rot_mat, num_controls, ctrl_state=ctrl_state)
with self.subTest(msg=f"control state = {ctrl_state}"):
self.assertTrue(matrix_equal(simulated, expected))
@combine(num_controls=[1, 2, 4], use_basis_gates=[True, False])
def test_multi_controlled_y_rotation_matrix_basic_mode(self, num_controls, use_basis_gates):
"""Test the multi controlled Y rotation using the mode 'basic'.
Based on the test moved here from Aqua:
https://github.com/Qiskit/qiskit-aqua/blob/769ca8f/test/aqua/test_mcr.py
"""
# get the number of required ancilla qubits
if num_controls <= 2:
num_ancillas = 0
else:
num_ancillas = num_controls - 2
q_controls = QuantumRegister(num_controls)
q_target = QuantumRegister(1)
for ctrl_state in range(2**num_controls):
bitstr = bin(ctrl_state)[2:].zfill(num_controls)[::-1]
theta = 0.871236 * pi
if num_ancillas > 0:
q_ancillas = QuantumRegister(num_ancillas)
qc = QuantumCircuit(q_controls, q_target, q_ancillas)
else:
qc = QuantumCircuit(q_controls, q_target)
q_ancillas = None
for idx, bit in enumerate(bitstr):
if bit == "0":
qc.x(q_controls[idx])
qc.mcry(
theta,
q_controls,
q_target[0],
q_ancillas,
mode="basic",
use_basis_gates=use_basis_gates,
)
for idx, bit in enumerate(bitstr):
if bit == "0":
qc.x(q_controls[idx])
rot_mat = RYGate(theta).to_matrix()
simulated = Operator(qc).data
if num_ancillas > 0:
simulated = simulated[: 2 ** (num_controls + 1), : 2 ** (num_controls + 1)]
expected = _compute_control_matrix(rot_mat, num_controls, ctrl_state=ctrl_state)
with self.subTest(msg=f"control state = {ctrl_state}"):
self.assertTrue(matrix_equal(simulated, expected))
def test_mcry_defaults_to_vchain(self):
"""Test mcry defaults to the v-chain mode if sufficient work qubits are provided."""
circuit = QuantumCircuit(5)
control_qubits = circuit.qubits[:3]
target_qubit = circuit.qubits[3]
additional_qubits = circuit.qubits[4:]
circuit.mcry(0.2, control_qubits, target_qubit, additional_qubits)
# If the v-chain mode is selected, all qubits are used. If the noancilla mode would be
# selected, the bottom qubit would remain unused.
dag = circuit_to_dag(circuit)
self.assertEqual(len(list(dag.idle_wires())), 0)
@data(1, 2)
def test_mcx_gates_yield_explicit_gates(self, num_ctrl_qubits):
"""Test the creating a MCX gate yields the explicit definition if we know it."""
cls = MCXGate(num_ctrl_qubits).__class__
explicit = {1: CXGate, 2: CCXGate}
self.assertEqual(cls, explicit[num_ctrl_qubits])
@data(1, 2, 3, 4)
def test_small_mcx_gates_yield_cx_count(self, num_ctrl_qubits):
"""Test the creating a MCX gate with small number of controls (with no ancillas)
yields the expected number of cx gates."""
qc = QuantumCircuit(num_ctrl_qubits + 1)
qc.append(MCXGate(num_ctrl_qubits), range(num_ctrl_qubits + 1))
from qiskit import transpile
cqc = transpile(qc, basis_gates=["u", "cx"])
cx_count = cqc.count_ops()["cx"]
expected = {1: 1, 2: 6, 3: 14, 4: 36}
self.assertEqual(cx_count, expected[num_ctrl_qubits])
@data(1, 2, 3, 4)
def test_mcxgraycode_gates_yield_explicit_gates(self, num_ctrl_qubits):
"""Test creating an mcx gate calls MCXGrayCode and yeilds explicit definition."""
qc = QuantumCircuit(num_ctrl_qubits + 1)
qc.mcx(list(range(num_ctrl_qubits)), [num_ctrl_qubits])
explicit = {1: CXGate, 2: CCXGate, 3: C3XGate, 4: C4XGate}
self.assertEqual(type(qc[0].operation), explicit[num_ctrl_qubits])
@data(3, 4, 5, 8)
def test_mcx_gates(self, num_ctrl_qubits):
"""Test the mcx gates."""
reference = np.zeros(2 ** (num_ctrl_qubits + 1))
reference[-1] = 1
for gate in [
MCXGrayCode(num_ctrl_qubits),
MCXRecursive(num_ctrl_qubits),
MCXVChain(num_ctrl_qubits, False),
MCXVChain(num_ctrl_qubits, True),
]:
with self.subTest(gate=gate):
circuit = QuantumCircuit(gate.num_qubits)
if num_ctrl_qubits > 0:
circuit.x(list(range(num_ctrl_qubits)))
circuit.append(gate, list(range(gate.num_qubits)), [])
statevector = Statevector(circuit).data
# account for ancillas
if hasattr(gate, "num_ancilla_qubits") and gate.num_ancilla_qubits > 0:
corrected = np.zeros(2 ** (num_ctrl_qubits + 1), dtype=complex)
for i, statevector_amplitude in enumerate(statevector):
i = int(bin(i)[2:].zfill(circuit.num_qubits)[gate.num_ancilla_qubits :], 2)
corrected[i] += statevector_amplitude
statevector = corrected
np.testing.assert_array_almost_equal(statevector.real, reference)
@data(1, 2, 3, 4)
def test_inverse_x(self, num_ctrl_qubits):
"""Test inverting the controlled X gate."""
cnx = XGate().control(num_ctrl_qubits)
inv_cnx = cnx.inverse()
result = Operator(cnx).compose(Operator(inv_cnx))
np.testing.assert_array_almost_equal(result.data, np.identity(result.dim[0]))
@data(1, 2, 3)
def test_inverse_gate(self, num_ctrl_qubits):
"""Test inverting a controlled gate based on a circuit definition."""
qc = QuantumCircuit(3)
qc.h(0)
qc.cx(0, 1)
qc.cx(1, 2)
qc.rx(np.pi / 4, [0, 1, 2])
gate = qc.to_gate()
cgate = gate.control(num_ctrl_qubits)
inv_cgate = cgate.inverse()
result = Operator(cgate).compose(Operator(inv_cgate))
np.testing.assert_array_almost_equal(result.data, np.identity(result.dim[0]))
@data(1, 2, 3)
def test_inverse_circuit(self, num_ctrl_qubits):
"""Test inverting a controlled gate based on a circuit definition."""
qc = QuantumCircuit(3)
qc.h(0)
qc.cx(0, 1)
qc.cx(1, 2)
qc.rx(np.pi / 4, [0, 1, 2])
cqc = qc.control(num_ctrl_qubits)
cqc_inv = cqc.inverse()
result = Operator(cqc).compose(Operator(cqc_inv))
np.testing.assert_array_almost_equal(result.data, np.identity(result.dim[0]))
@data(1, 2, 3, 4, 5)
def test_controlled_unitary(self, num_ctrl_qubits):
"""Test the matrix data of an Operator, which is based on a controlled gate."""
num_target = 1
q_target = QuantumRegister(num_target)
qc1 = QuantumCircuit(q_target)
# for h-rx(pi/2)
theta, phi, lamb = 1.57079632679490, 0.0, 4.71238898038469
qc1.u(theta, phi, lamb, q_target[0])
base_gate = qc1.to_gate()
# get UnitaryGate version of circuit
base_op = Operator(qc1)
base_mat = base_op.data
cgate = base_gate.control(num_ctrl_qubits)
test_op = Operator(cgate)
cop_mat = _compute_control_matrix(base_mat, num_ctrl_qubits)
self.assertTrue(is_unitary_matrix(base_mat))
self.assertTrue(matrix_equal(cop_mat, test_op.data))
@data(1, 2, 3, 4, 5)
def test_controlled_random_unitary(self, num_ctrl_qubits):
"""Test the matrix data of an Operator based on a random UnitaryGate."""
num_target = 2
base_gate = random_unitary(2**num_target).to_instruction()
base_mat = base_gate.to_matrix()
cgate = base_gate.control(num_ctrl_qubits)
test_op = Operator(cgate)
cop_mat = _compute_control_matrix(base_mat, num_ctrl_qubits)
self.assertTrue(matrix_equal(cop_mat, test_op.data))
@combine(num_ctrl_qubits=[1, 2, 3], ctrl_state=[0, None])
def test_open_controlled_unitary_z(self, num_ctrl_qubits, ctrl_state):
"""Test that UnitaryGate with control returns params."""
umat = np.array([[1, 0], [0, -1]])
ugate = UnitaryGate(umat)
cugate = ugate.control(num_ctrl_qubits, ctrl_state=ctrl_state)
ref_mat = _compute_control_matrix(umat, num_ctrl_qubits, ctrl_state=ctrl_state)
self.assertEqual(Operator(cugate), Operator(ref_mat))
def test_controlled_controlled_rz(self):
"""Test that UnitaryGate with control returns params."""
qc = QuantumCircuit(1)
qc.rz(0.2, 0)
controlled = QuantumCircuit(2)
controlled.compose(qc.control(), inplace=True)
self.assertEqual(Operator(controlled), Operator(CRZGate(0.2)))
self.assertEqual(Operator(controlled), Operator(RZGate(0.2).control()))
def test_controlled_controlled_unitary(self):
"""Test that global phase in iso decomposition of unitary is handled."""
umat = np.array([[1, 0], [0, -1]])
ugate = UnitaryGate(umat)
cugate = ugate.control()
ccugate = cugate.control()
ccugate2 = ugate.control(2)
ref_mat = _compute_control_matrix(umat, 2)
self.assertTrue(Operator(ccugate2).equiv(Operator(ref_mat)))
self.assertTrue(Operator(ccugate).equiv(Operator(ccugate2)))
@data(1, 2, 3)
def test_open_controlled_unitary_matrix(self, num_ctrl_qubits):
"""test open controlled unitary matrix"""
# verify truth table
num_target_qubits = 2
num_qubits = num_ctrl_qubits + num_target_qubits
target_op = Operator(XGate())
for i in range(num_target_qubits - 1):
target_op = target_op.tensor(XGate())
for i in range(2**num_qubits):
input_bitstring = bin(i)[2:].zfill(num_qubits)
input_target = input_bitstring[0:num_target_qubits]
input_ctrl = input_bitstring[-num_ctrl_qubits:]
phi = Statevector.from_label(input_bitstring)
cop = Operator(
_compute_control_matrix(target_op.data, num_ctrl_qubits, ctrl_state=input_ctrl)
)
for j in range(2**num_qubits):
output_bitstring = bin(j)[2:].zfill(num_qubits)
output_target = output_bitstring[0:num_target_qubits]
output_ctrl = output_bitstring[-num_ctrl_qubits:]
psi = Statevector.from_label(output_bitstring)
cxout = np.dot(phi.data, psi.evolve(cop).data)
if input_ctrl == output_ctrl:
# flip the target bits
cond_output = "".join([str(int(not int(a))) for a in input_target])
else:
cond_output = input_target
if cxout == 1:
self.assertTrue((output_ctrl == input_ctrl) and (output_target == cond_output))
else:
self.assertTrue(
((output_ctrl == input_ctrl) and (output_target != cond_output))
or output_ctrl != input_ctrl
)
def test_open_control_cx_unrolling(self):
"""test unrolling of open control gates when gate is in basis"""
qc = QuantumCircuit(2)
qc.cx(0, 1, ctrl_state=0)
ref_circuit = QuantumCircuit(2)
ref_circuit.append(U3Gate(np.pi, 0, np.pi), [0])
ref_circuit.cx(0, 1)
ref_circuit.append(U3Gate(np.pi, 0, np.pi), [0])
self.assertEqualTranslated(qc, ref_circuit, ["u3", "cx"])
def test_open_control_cy_unrolling(self):
"""test unrolling of open control gates when gate is in basis"""
qc = QuantumCircuit(2)
qc.cy(0, 1, ctrl_state=0)
ref_circuit = QuantumCircuit(2)
ref_circuit.append(U3Gate(np.pi, 0, np.pi), [0])
ref_circuit.cy(0, 1)
ref_circuit.append(U3Gate(np.pi, 0, np.pi), [0])
self.assertEqualTranslated(qc, ref_circuit, ["u3", "cy"])
def test_open_control_ccx_unrolling(self):
"""test unrolling of open control gates when gate is in basis"""
qreg = QuantumRegister(3)
qc = QuantumCircuit(qreg)
ccx = CCXGate(ctrl_state=0)
qc.append(ccx, [0, 1, 2])
# ┌───┐ ┌───┐
# q0_0: ┤ X ├──■──┤ X ├
# ├───┤ │ ├───┤
# q0_1: ┤ X ├──■──┤ X ├
# └───┘┌─┴─┐└───┘
# q0_2: ─────┤ X ├─────
# └───┘
ref_circuit = QuantumCircuit(qreg)
ref_circuit.x(qreg[0])
ref_circuit.x(qreg[1])
ref_circuit.ccx(qreg[0], qreg[1], qreg[2])
ref_circuit.x(qreg[0])
ref_circuit.x(qreg[1])
self.assertEqualTranslated(qc, ref_circuit, ["x", "ccx"])
def test_ccx_ctrl_state_consistency(self):
"""Test the consistency of parameters ctrl_state in CCX
See issue: https://github.com/Qiskit/qiskit-terra/issues/6465
"""
qreg = QuantumRegister(3)
qc = QuantumCircuit(qreg)
qc.ccx(qreg[0], qreg[1], qreg[2], ctrl_state=0)
ref_circuit = QuantumCircuit(qreg)
ccx = CCXGate(ctrl_state=0)
ref_circuit.append(ccx, [qreg[0], qreg[1], qreg[2]])
self.assertEqual(qc, ref_circuit)
@data((4, [0, 1, 2], 3, "010"), (4, [2, 1, 3], 0, 2))
@unpack
def test_multi_control_x_ctrl_state_parameter(
self, num_qubits, ctrl_qubits, target_qubit, ctrl_state
):
"""To check the consistency of parameters ctrl_state in MCX"""
qc = QuantumCircuit(num_qubits)
qc.mcx(ctrl_qubits, target_qubit, ctrl_state=ctrl_state)
operator_qc = Operator(qc)
qc1 = QuantumCircuit(num_qubits)
gate = MCXGate(num_ctrl_qubits=len(ctrl_qubits), ctrl_state=ctrl_state)
qc1.append(gate, ctrl_qubits + [target_qubit])
operator_qc1 = Operator(qc1)