-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
66 lines (54 loc) · 2.48 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from argparse import ArgumentParser
import logging
import sys
import train
import configs
import torch
import torchvision.datasets as dset
import torchvision.transforms as transforms
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logger = logging.getLogger(__name__)
def load_dataset(path, batch_size, num_workers=8):
dataset = dset.ImageFolder(root=path, transform=transforms.Compose([
transforms.Resize((32, 32)), # resize image to 256x256
transforms.ToTensor(), # scale image pixels from [0, 255] to [0, 1] values
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # [-1, 1]
]))
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True)
def main(args, device):
torch.manual_seed(42)
cfg = configs.ModelConfig(
lr=args.lr,
num_epochs=args.num_epochs,
ckpt_path=args.ckpt_path,
saved_ckpt_path=args.saved_ckpt_path,
log_dir=args.log_dir,
num_encoded_bits=args.num_bits,
image_shape=(args.image_size, args.image_size),
batch_size=args.batch_size,
beta_epochs=args.beta_epochs,
beta_max=args.beta_max,
)
train_data = load_dataset(args.train_path, args.batch_size)
# use batch=1 to be compatible with different image resolution w/o resizing.
eval_data = load_dataset(args.eval_path, 1, num_workers=0)
wm_model = train.Watermark(cfg, device=device)
wm_model.train(train_data, eval_data, args.saved_ckpt_path)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--train_path", type=str, required=True)
parser.add_argument("--eval_path", type=str, required=True)
parser.add_argument("--log_dir", type=str, default="./runs/")
parser.add_argument("--ckpt_path", type=str, default="./ckpts/")
parser.add_argument("--saved_ckpt_path", type=str)
parser.add_argument("--num_epochs", type=int, default=200)
parser.add_argument("--num_bits", type=int, default=32)
parser.add_argument("--image_size", type=int, default=32)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--lr", type=float, default=0.0001)
parser.add_argument("--beta_max", type=float, default=40.)
parser.add_argument("--beta_epochs", type=int, default=20)
torch.cuda.empty_cache()
command_args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
main(command_args, device)