-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathvis_depth.py
235 lines (189 loc) · 10.5 KB
/
vis_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import torch
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
import open3d as o3d
import numpy as np
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
from utils.graphics_utils import fov2focal
from wis3d import Wis3D
from torchmetrics.functional.image import image_gradients
import matplotlib.pyplot as plt
from utils.loss_utils import norm_loss
def render_set(model_path, name, iteration, views, gaussians, pipeline, background):
v3d = Wis3D("dbg", model_path.strip("output/")[:10], "xyz")
print("wis3d dir: ", model_path.strip("output/")[:10])
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
depth_path = os.path.join(model_path, name, "ours_{}".format(iteration), "depth")
depthmap_path = os.path.join(model_path, name, "ours_{}".format(iteration), "depthmap")
normalmap_path = os.path.join(model_path, name, "ours_{}".format(iteration), "normalmap")
depthfile_path = os.path.join(model_path, name, "ours_{}".format(iteration), "depthfile")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
makedirs(depth_path, exist_ok=True)
makedirs(depthmap_path, exist_ok=True)
makedirs(normalmap_path, exist_ok=True)
makedirs(depthfile_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
# torch.cuda.empty_cache()
render_pkg = render(view, gaussians, pipeline, background)
rendering = render_pkg["render"]
depth= render_pkg["depth"]
radii= render_pkg["radii"]
ray_P = render_pkg["ray_P"]
ray_M = render_pkg["ray_M"]
if "normal" in render_pkg.keys():
normal = render_pkg["normal"]
else:
normal = None
visualize(rendering,depth,view,idx, depth_path, normal=normal, vis=v3d, normal_path=normalmap_path, ray_P=ray_P, ray_M=ray_M)
gt = view.original_image[0:3, :, :]
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
torchvision.utils.save_image(gt, os.path.join(gts_path, '{0:05d}'.format(idx) + ".png"))
depthfile = depth.cpu().numpy()
np.savez_compressed(os.path.join(depthfile_path, '{0:05d}'.format(idx) + ".npz"), depth=depthfile)
depth = torch.clamp(depth, 1, 15)
normed_depth = (depth - depth.min()) / (depth.max() - depth.min())
colored_depth = plt.cm.jet(normed_depth.squeeze().cpu().numpy())[..., :3]
torchvision.utils.save_image(torch.from_numpy(colored_depth).permute(2, 0, 1), os.path.join(depthmap_path, '{0:05d}'.format(idx) + ".png"))
# break
def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool):
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
if not skip_train:
render_set(dataset.model_path, "train", scene.loaded_iter, scene.getTrainCameras(), gaussians, pipeline, background)
if not skip_test:
render_set(dataset.model_path, "test", scene.loaded_iter, scene.getTestCameras(), gaussians, pipeline, background)
def visualize(rendering,depth,view,idx, depth_path, normal=None, vis: Wis3D =None, normal_path=None, ray_P=None, ray_M=None):
# def visualize(idx=0):
'''
Input:
rendering: (3,H,W) tensor
depth: (1,H,W) tensor
K: (4,4) tensor
'''
scale=view.scale
H,W=rendering.shape[1:]
fx=fov2focal(view.FoVx, W)
fy=fov2focal(view.FoVy, H)
print("fx: ", fx, "fy: ", fy)
cx=W/2
cy=H/2
Ln, normal_L, lossmap = norm_loss(ray_P, ray_M, depth, fx, fy, W, H)
print("Ln: ", Ln)
x=torch.arange(W).reshape(1, -1).repeat(H, 1)
y=torch.arange(H).reshape(-1, 1).repeat(1, W)
x=(x-cx)/fx
y=(y-cy)/fy
Z=depth.squeeze().cpu().numpy()
X=(x*Z).numpy()
Y=(y*Z).numpy()
xyz = torch.from_numpy(np.stack((X, Y, Z)))
# dPx = torch.gradient(xyz, dim=2)[0]
# dPy = torch.gradient(xyz, dim=1)[0]
_, dPy, dPx = torch.gradient(xyz)
dPx = dPx / torch.norm(dPx, dim=0, keepdim=True)
dPy = dPy / torch.norm(dPy, dim=0, keepdim=True)
normal_P = torch.cross(dPx, dPy, dim=0).cuda()
normal_P = normal_P / torch.norm(normal_P, dim=0, keepdim=True)
# dPx = np.gradient(xyz, axis=0)
# dPy = np.gradient(xyz, axis=1)
# dPx = dPx / np.linalg.norm(dPx, axis=-1, keepdims=True)
# dPy = dPy / np.linalg.norm(dPy, axis=-1, keepdims=True)
# normal_P = np.cross(dPx, dPy, axis=-1)
# normal_P = normal_P / np.linalg.norm(normal_P, axis=-1, keepdims=True)
# view_ray = np.stack([x.numpy(), y.numpy(), np.ones_like(x)], axis=-1)
# view_ray = view_ray / np.linalg.norm(view_ray, axis=-1, keepdims=True)
# angle = np.sum(normal_P * view_ray, axis=-1)
# normal_P[angle>0, :] *= -1.0
# torchvision.utils.save_image(torch.from_numpy((1-normal_P)/2).permute(2, 0, 1), os.path.join(normal_path, f"normal_P{idx:05d}.png"))
valid_mask = (Z>0)
X=X[valid_mask]
Y=Y[valid_mask]
Z=Z[valid_mask]
# depth_D = depth.clone().detach().unsqueeze(0)
# dZx, dZy = image_gradients(depth_D)
# dZx = dZx.squeeze()
# dZy = dZy.squeeze()
# grad_x = torch.stack([depth_D.squeeze()/fx, torch.zeros_like(depth_D.squeeze()), dZx])
# grad_y = torch.stack([torch.zeros_like(depth_D.squeeze()), depth_D.squeeze()/fy, dZy])
# grad_x = grad_x / torch.norm(grad_x, dim=0, keepdim=True)
# grad_y = grad_y / torch.norm(grad_y, dim=0, keepdim=True)
# normal_D = torch.cross(grad_x, grad_y, dim=0)
# normal_D = normal_D / torch.norm(normal_D, dim=0, keepdim=True)
# compute the angle between the depth normal and view ray, flip the normal if the angle is less than 90 degrees
view_ray = torch.stack([x, y, torch.ones_like(x)]).cuda()
view_ray = view_ray / torch.norm(view_ray, dim=0, keepdim=True)
# angle = torch.sum(normal_D * view_ray, dim=0)
# normal_D[:, angle>0] *= -1.0
angle = torch.sum(normal_P * view_ray, dim=0)
normal_P[:, angle>0] *= -1.0
normal_RGB = (1-normal_P) / 2.0
torchvision.utils.save_image(normal_RGB, os.path.join(normal_path, f"normal_P{idx:05d}.png"))
print("norm err: ", torch.norm(normal_P - normal_L))
# normal_RGB = (1-normal_D) / 2.0
# torchvision.utils.save_image(normal_RGB, os.path.join(normal_path, f"N{idx:05d}.png"))
Z = np.clip(Z, 1.0, 15)
pcd=o3d.geometry.PointCloud()
pcd.points=o3d.utility.Vector3dVector(np.stack((X, Y, Z), axis=-1).reshape(-1, 3))
colors = rendering.permute(1, 2, 0).reshape(-1, 3).cpu().numpy()
colors=np.clip(colors, 0.0, 1.0)
colors = colors[valid_mask.flatten()]
pcd.colors = o3d.utility.Vector3dVector(colors)
# o3d.visualization.draw_geometries([pcd])
o3d.io.write_point_cloud(os.path.join(depth_path, f"output{idx:05d}.ply"), pcd)
if normal is not None and vis is not None:
color_normal = (1-normal) / 2.0
torchvision.utils.save_image(color_normal, os.path.join(normal_path, f"rendernormal_{idx:05d}.png"))
# vis.set_scene_id(idx)
normal = normal.permute(1, 2, 0).reshape(-1, 3).cpu().numpy()[valid_mask.flatten()]
vis.add_point_cloud(np.stack((X, Y, Z), axis=-1).reshape(-1, 3), colors= colors, name="pointcloud")
stride = 111
vis.add_lines(np.stack((X, Y, Z), axis=-1).reshape(-1, 3)[::stride], (np.stack((X, Y, Z), axis=-1).reshape(-1, 3) + 0.2*normal.reshape(-1, 3))[::stride], name="normals")
# normal_D = normal_D.permute(1, 2, 0).reshape(-1, 3).cpu().numpy()[valid_mask.flatten()]
# vis.add_lines(np.stack((X, Y, Z), axis=-1).reshape(-1, 3)[::100], (np.stack((X, Y, Z), axis=-1).reshape(-1, 3) + 0.2*normal_D.reshape(-1, 3))[::100], name="normals_D")
# grad_x = grad_x.permute(1, 2, 0).reshape(-1, 3).cpu().numpy()[valid_mask.flatten()]
# vis.add_lines(np.stack((X, Y, Z), axis=-1).reshape(-1, 3)[::100], (np.stack((X, Y, Z), axis=-1).reshape(-1, 3) + 0.2*grad_x.reshape(-1, 3))[::100], name="grad_x")
# grad_y = grad_y.permute(1, 2, 0).reshape(-1, 3).cpu().numpy()[valid_mask.flatten()]
# vis.add_lines(np.stack((X, Y, Z), axis=-1).reshape(-1, 3)[::100], (np.stack((X, Y, Z), axis=-1).reshape(-1, 3) + 0.2*grad_y.reshape(-1, 3))[::100], name="grad_y")
# dPx = dPx.permute(1, 2, 0).reshape(-1, 3).cpu().numpy()[valid_mask.flatten()]
# vis.add_lines(np.stack((X, Y, Z), axis=-1).reshape(-1, 3)[::stride], (np.stack((X, Y, Z), axis=-1).reshape(-1, 3) + 0.2*dPx.reshape(-1, 3))[::stride], name="dPx")
# dPy = dPy.permute(1, 2, 0).reshape(-1, 3).cpu().numpy()[valid_mask.flatten()]
# vis.add_lines(np.stack((X, Y, Z), axis=-1).reshape(-1, 3)[::stride], (np.stack((X, Y, Z), axis=-1).reshape(-1, 3) + 0.2*dPy.reshape(-1, 3))[::stride], name="dPy")
normal_P = normal_P.permute(1, 2, 0).reshape(-1, 3).cpu().numpy()[valid_mask.flatten()]
vis.add_lines(np.stack((X, Y, Z), axis=-1).reshape(-1, 3)[::stride], (np.stack((X, Y, Z), axis=-1).reshape(-1, 3) + 0.2*normal_P.reshape(-1, 3))[::stride], name="normal_P")
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
args = get_combined_args(parser)
print("Rendering " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
render_sets(model.extract(args), args.iteration, pipeline.extract(args), args.skip_train, args.skip_test)
# visualize()