-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtest_starkqa_primekg_loader.py
116 lines (108 loc) · 4.3 KB
/
test_starkqa_primekg_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""
Test cases for starkqa_primekg_loader.py
"""
import os
import shutil
import pytest
from ..datasets.starkqa_primekg import StarkQAPrimeKG
# Remove the data folder for testing if it exists
LOCAL_DIR = "../data/starkqa_primekg_test/"
shutil.rmtree(LOCAL_DIR, ignore_errors=True)
@pytest.fixture(name="starkqa_primekg")
def starkqa_primekg_fixture():
"""
Fixture for creating an instance of StarkQAPrimeKGData.
"""
return StarkQAPrimeKG(local_dir=LOCAL_DIR)
def test_download_starkqa_primekg(starkqa_primekg):
"""
Test the loading method of the StarkQAPrimeKGLoaderTool class by downloading files
from HuggingFace Hub.
"""
# Load StarkQA PrimeKG data
starkqa_primekg.load_data()
starkqa_df = starkqa_primekg.get_starkqa()
primekg_node_info = starkqa_primekg.get_starkqa_node_info()
split_idx = starkqa_primekg.get_starkqa_split_indicies()
query_embeddings = starkqa_primekg.get_query_embeddings()
node_embeddings = starkqa_primekg.get_node_embeddings()
# Check if the local directory exists
assert os.path.exists(starkqa_primekg.local_dir)
# Check if downloaded files exist in the local directory
files = ['qa/prime/split/test-0.1.index',
'qa/prime/split/test.index',
'qa/prime/split/train.index',
'qa/prime/split/val.index',
'qa/prime/stark_qa/stark_qa.csv',
'qa/prime/stark_qa/stark_qa_human_generated_eval.csv',
'skb/prime/processed.zip']
for file in files:
path = f"{starkqa_primekg.local_dir}/{file}"
assert os.path.exists(path)
# Check dataframe
assert starkqa_df is not None
assert len(starkqa_df) > 0
assert starkqa_df.shape[0] == 11204
# Check node information
assert primekg_node_info is not None
assert len(primekg_node_info) == 129375
# Check split indices
assert list(split_idx.keys()) == ['train', 'val', 'test', 'test-0.1']
assert len(split_idx['train']) == 6162
assert len(split_idx['val']) == 2241
assert len(split_idx['test']) == 2801
assert len(split_idx['test-0.1']) == 280
# Check query embeddings
assert query_embeddings is not None
assert len(query_embeddings) == 11204
assert query_embeddings[0].shape[1] == 1536
# Check node embeddings
assert node_embeddings is not None
assert len(node_embeddings) == 129375
assert node_embeddings[0].shape[1] == 1536
def test_load_existing_starkqa_primekg(starkqa_primekg):
"""
Test the loading method of the StarkQAPrimeKGLoaderTool class by loading existing files
in the local directory.
"""
# Load StarkQA PrimeKG data
starkqa_primekg.load_data()
starkqa_df = starkqa_primekg.get_starkqa()
primekg_node_info = starkqa_primekg.get_starkqa_node_info()
split_idx = starkqa_primekg.get_starkqa_split_indicies()
query_embeddings = starkqa_primekg.get_query_embeddings()
node_embeddings = starkqa_primekg.get_node_embeddings()
# Check if the local directory exists
assert os.path.exists(starkqa_primekg.local_dir)
# Check if downloaded and processed files exist
files = ['qa/prime/split/test-0.1.index',
'qa/prime/split/test.index',
'qa/prime/split/train.index',
'qa/prime/split/val.index',
'qa/prime/stark_qa/stark_qa.csv',
'qa/prime/stark_qa/stark_qa_human_generated_eval.csv',
'skb/prime/processed.zip']
for file in files:
path = f"{starkqa_primekg.local_dir}/{file}"
assert os.path.exists(path)
# Check dataframe
assert starkqa_df is not None
assert len(starkqa_df) > 0
assert starkqa_df.shape[0] == 11204
# Check node information
assert primekg_node_info is not None
assert len(primekg_node_info) == 129375
# Check split indices
assert list(split_idx.keys()) == ['train', 'val', 'test', 'test-0.1']
assert len(split_idx['train']) == 6162
assert len(split_idx['val']) == 2241
assert len(split_idx['test']) == 2801
assert len(split_idx['test-0.1']) == 280
# Check query embeddings
assert query_embeddings is not None
assert len(query_embeddings) == 11204
assert query_embeddings[0].shape[1] == 1536
# Check node embeddings
assert node_embeddings is not None
assert len(node_embeddings) == 129375
assert node_embeddings[0].shape[1] == 1536