forked from fabiocarrara/neural-ode-features
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
232 lines (180 loc) · 8.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import argparse
import os
import shutil
import sys
import torch
import torch.nn.functional as F
from torch.optim import Adam, SGD
from torch.optim.lr_scheduler import LambdaLR, ReduceLROnPlateau, CosineAnnealingLR
from torch.utils.data import DataLoader
from tqdm import tqdm, trange
from expman import Experiment
from model import ResNet, ODENet
from utils import load_dataset
def save_checkpoint(exp, state, is_best):
filename = exp.ckpt('last')
torch.save(state, filename)
if is_best:
best_filename = exp.ckpt('best')
shutil.copyfile(filename, best_filename)
def train(loader, model, optimizer, args):
model.train()
optimizer.zero_grad()
nfe_forward = 0
nfe_backward = 0
n_correct = 0
n_processed = 0
n_batch_processed = 0
total_loss = 0
progress = tqdm(loader)
for x, y in progress:
x, y = x.to(args.device), y.to(args.device)
p = model(x)
loss = F.cross_entropy(p, y)
total_loss += loss.item()
n_correct += (y == p.argmax(dim=1)).sum().item()
n_processed += y.shape[0]
nfe_forward += model.nfe(reset=True)
loss.backward()
nfe_backward += model.nfe(reset=True)
n_batch_processed += 1
if n_batch_processed % args.batch_accumulation == 0:
optimizer.step()
optimizer.zero_grad()
accuracy = n_correct / n_processed
avg_loss = total_loss / n_batch_processed
avg_nfe_forward = nfe_forward / n_batch_processed
avg_nfe_backward = nfe_backward / n_batch_processed
progress.set_postfix({
'loss': f'{loss:4.3f}|{avg_loss:4.3f}',
'acc': f'{n_correct:4d}/{n_processed:4d} ({accuracy:.2%})',
'NFE-F': f'{avg_nfe_forward:3.1f}',
'NFE-B': f'{avg_nfe_backward:3.1f}'
})
return {'loss': avg_loss, 'acc': accuracy, 'nfe-f': avg_nfe_forward, 'nfe-b': avg_nfe_backward}
def evaluate(loader, model, args):
model.eval()
nfe_forward = 0
n_correct = 0
n_batches = 0
n_processed = 0
total_loss = 0
progress = tqdm(loader)
for x, y in progress:
x, y = x.to(args.device), y.to(args.device)
p = model(x)
nfe_forward += model.nfe(reset=True)
loss = F.cross_entropy(p, y, reduction='sum')
total_loss += loss.item()
n_correct += (y == p.argmax(dim=1)).sum().item()
n_processed += y.shape[0]
n_batches += 1
logloss = total_loss / n_processed
accuracy = n_correct / n_processed
nfe = nfe_forward / n_batches
metrics = {
'loss': f'{logloss:4.3f}',
'acc': f'{n_correct:4d}/{n_processed:4d} ({accuracy:.2%})',
'nfe': f'{nfe:3.1f}'
}
progress.set_postfix(metrics)
return {'test_loss': logloss, 'test_acc': accuracy, 'test_nfe': nfe}
def main(args):
root = 'runs_' + args.dataset
exp = Experiment(args, root=root, main='model', ignore=('cuda', 'device', 'epochs', 'resume'))
print(exp)
if os.path.exists(exp.path_to('log')) and not args.resume:
print('Skipping ...')
sys.exit(0)
train_data, test_data, in_ch, out = load_dataset(args)
train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True)
test_loader = DataLoader(test_data, batch_size=args.batch_size, shuffle=False)
common_model_params = dict(out=out,
downsample=args.downsample,
n_filters=args.filters,
dropout=args.dropout,
norm=args.norm)
if args.model == 'odenet':
model = ODENet(in_ch, method=args.method, tol=args.tol, adjoint=args.adjoint, **common_model_params)
else:
model = ResNet(in_ch, **common_model_params)
model = model.to(args.device)
if args.optim == 'sgd':
optimizer = SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.wd)
elif args.optim == 'adam':
optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
# print(train_data)
# print(test_data)
# print(model)
# print(optimizer)
if args.resume:
ckpt = torch.load(exp.ckpt('last'))
print('Loaded: {}'.format(exp.ckpt('last')))
model.load_state_dict(ckpt['model'])
optimizer.load_state_dict(ckpt['optim'])
start_epoch = ckpt['epoch'] + 1
best_accuracy = exp.log['test_acc'].max()
print('Resuming from epoch {}: {}'.format(start_epoch, exp.name))
else:
metrics = evaluate(test_loader, model, args)
best_accuracy = metrics['test_acc']
start_epoch = 1
if args.lrschedule == 'fixed':
scheduler = LambdaLR(optimizer, lr_lambda=lambda x: 1) # no-op scheduler, just for cleaner code
elif args.lrschedule == 'plateau':
scheduler = ReduceLROnPlateau(optimizer, mode='max', patience=args.patience)
elif args.lrschedule == 'cosine':
scheduler = CosineAnnealingLR(optimizer, args.lrcycle, last_epoch=start_epoch - 2)
progress = trange(start_epoch, args.epochs + 1, initial=start_epoch, total=args.epochs)
for epoch in progress:
metrics = {'epoch': epoch}
progress.set_postfix({'Best ACC': f'{best_accuracy:.2%}'})
progress.set_description('TRAIN')
train_metrics = train(train_loader, model, optimizer, args)
progress.set_description('EVAL')
test_metrics = evaluate(test_loader, model, args)
is_best = test_metrics['test_acc'] > best_accuracy
best_accuracy = max(test_metrics['test_acc'], best_accuracy)
metrics.update(train_metrics)
metrics.update(test_metrics)
save_checkpoint(exp, {
'epoch': epoch,
'params': vars(args),
'model': model.state_dict(),
'optim': optimizer.state_dict(),
'metrics': metrics
}, is_best)
exp.push_log(metrics)
sched_args = metrics['test_acc'] if args.lrschedule == 'plateau' else None
scheduler.step(sched_args)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='ODENet/ResNet training')
parser.add_argument('--dataset', type=str, choices=('mnist', 'cifar10', 'cifar100', 'tiny-imagenet-200'), default='mnist')
parser.add_argument('--augmentation', type=str, choices=('none', 'crop+flip+norm', 'crop+jitter+flip+norm'),
default='none')
parser.add_argument('-m', '--model', type=str, choices=('resnet', 'odenet'), default='odenet')
parser.add_argument('-d', '--downsample', type=str, choices=('ode2', 'ode', 'residual', 'convolution', 'minimal', 'one-shot'), default='residual')
parser.add_argument('-n', '--norm', type=str, choices=('group', 'batch'), default='group')
parser.add_argument('-f', '--filters', type=int, default=64)
parser.add_argument('--dropout', type=float, default=0)
parser.add_argument('-e', '--epochs', type=int, default=100)
parser.add_argument('-b', '--batch-size', type=int, default=128)
parser.add_argument('--batch-accumulation', type=int, default=1)
parser.add_argument('-o', '--optim', type=str, choices=('sgd', 'adam'), default='sgd')
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--lrschedule', type=str, choices=('fixed', 'plateau', 'cosine'), default='plateau')
parser.add_argument('--lrcycle', type=int, default=0)
parser.add_argument('-p', '--patience', type=int, default=10)
parser.add_argument('--wd', type=float, default=0, help='weight decay')
parser.add_argument('--no-cuda', dest='cuda', action='store_false')
parser.set_defaults(cuda=True)
parser.add_argument('--method', default='dopri5', choices=('dopri5', 'adams'))
parser.add_argument('-t', '--tol', type=float, default=1e-3)
parser.add_argument('-a', '--adjoint', default=False, action='store_true')
parser.add_argument('-r', '--resume', action='store_true', default=False)
parser.add_argument('-s', '--seed', type=int, default=23)
args = parser.parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
args.device = torch.device('cuda' if args.cuda and torch.cuda.is_available() else 'cpu')
main(args)