-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dqn.py
217 lines (178 loc) · 7.67 KB
/
train_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#!/usr/bin/env python3
import time
import numpy as np
import collections
import torch
import torch.nn as nn
import torch.optim as optim
COLAB = False
CUDA = True
if not COLAB:
from lib import wrappers
from lib import dqn_model
import argparse
from tensorboardX import SummaryWriter
ENV_NAME = "PongNoFrameskip-v4"
MEAN_REWARD_BOUND = 19.5
GAMMA = 0.99
BATCH_SIZE = 32
REPLAY_SIZE = 10 ** 4 * 2
LEARNING_RATE = 1e-4
TARGET_UPDATE_FREQ = 1000
LEARNING_STARTS = 10000
EPSILON_DECAY = 10**5
EPSILON_START = 1.0
EPSILON_FINAL = 0.02
MODEL = "PretrainedModels/PongNoFrameskip-v4-407.dat"
LOAD_MODEL = True
Experience = collections.namedtuple('Experience', field_names=['state', 'action', 'reward', 'done', 'new_state'])
class ExperienceReplay:
def __init__(self, capacity):
self.buffer = collections.deque(maxlen=capacity)
def __len__(self):
return len(self.buffer)
def append(self, experience):
self.buffer.append(experience)
def sample(self, batch_size):
indices = np.random.choice(len(self.buffer), batch_size, replace=False)
states, actions, rewards, dones, next_states = zip(*[self.buffer[idx] for idx in indices])
return np.array(states), np.array(actions), np.array(rewards, dtype=np.float32), \
np.array(dones, dtype=np.uint8), np.array(next_states)
class Agent:
def __init__(self, env, replay_memory):
self.env = env
self.replay_memory = replay_memory
self._reset()
self.last_action = 0
def _reset(self):
self.state = env.reset()
self.total_reward = 0.0
def play_step(self, net, epsilon=0.0, device="cpu"):
"""
Select action
Execute action and step environment
Add state/action/reward to experience replay
"""
done_reward = None
if np.random.random() < epsilon:
action = env.action_space.sample()
else:
state_a = np.array([self.state], copy=False)
state_v = torch.tensor(state_a).to(device)
q_vals_v = net(state_v)
_, act_v = torch.max(q_vals_v, dim=1)
action = int(act_v.item())
# do step in the environment
new_state, reward, is_done, _ = self.env.step(action)
self.total_reward += reward
new_state = new_state
exp = Experience(self.state, action, reward, is_done, new_state)
self.replay_memory.append(exp)
self.state = new_state
if is_done:
done_reward = self.total_reward
self._reset()
return done_reward
def calculate_loss(batch, net, target_net, device="cpu"):
"""
Calculate MSE between actual state action values,
and expected state action values from DQN
"""
states, actions, rewards, dones, next_states = batch
states_v = torch.tensor(states).to(device)
next_states_v = torch.tensor(next_states).to(device)
actions_v = torch.tensor(actions).to(device)
rewards_v = torch.tensor(rewards).to(device)
done = torch.ByteTensor(dones).to(device)
state_action_values = net(states_v).gather(1, actions_v.long().unsqueeze(-1)).squeeze(-1)
next_state_values = target_net(next_states_v).max(1)[0]
next_state_values[done] = 0.0
next_state_values = next_state_values.detach()
expected_state_action_values = next_state_values * GAMMA + rewards_v
return nn.MSELoss()(state_action_values, expected_state_action_values)
print("ReplayMemory will require {}gb of GPU RAM".format(round(REPLAY_SIZE * 32 * 84 * 84 / 1e+9, 2)))
if __name__ == "__main__":
if COLAB:
"""Default argparse does not work on colab"""
class ColabArgParse():
def __init__(self, cuda, env, reward, model):
self.cuda = cuda
self.env = env
self.reward = reward
self.model = model
args = ColabArgParse(CUDA, ENV_NAME, MEAN_REWARD_BOUND, MODEL)
else:
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", default=True, action="store_true", help="Enable cuda")
parser.add_argument("--env", default=ENV_NAME,
help="Name of the environment, default=" + ENV_NAME)
parser.add_argument("--reward", type=float, default=MEAN_REWARD_BOUND,
help="Mean reward to stop training, default={}".format(round(MEAN_REWARD_BOUND, 2)))
parser.add_argument("-m", "--model", help="Model file to load")
args = parser.parse_args()
device = torch.device("cuda" if args.cuda else "cpu")
# Make Gym environement and DQNs
if COLAB:
env = make_env(args.env)
net = DQN(env.observation_space.shape, env.action_space.n).to(device)
target_net = DQN(env.observation_space.shape, env.action_space.n).to(device)
else:
env = wrappers.make_env(args.env)
net = dqn_model.DQN(env.observation_space.shape, env.action_space.n).to(device)
target_net = dqn_model.DQN(env.observation_space.shape, env.action_space.n).to(device)
writer = SummaryWriter(comment="-" + args.env)
print(net)
replay_memory = ExperienceReplay(REPLAY_SIZE)
agent = Agent(env, replay_memory)
epsilon = EPSILON_START
if LOAD_MODEL:
net.load_state_dict(torch.load(args.model, map_location=lambda storage, loc: storage))
target_net.load_state_dict(net.state_dict())
print("Models loaded from disk!")
# Lower exploration rate
EPSILON_START = EPSILON_FINAL
optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE)
total_rewards = []
best_mean_reward = None
frame_idx = 0
timestep_frame = 0
timestep = time.time()
while True:
frame_idx += 1
epsilon = max(EPSILON_FINAL, EPSILON_START - frame_idx / EPSILON_DECAY)
reward = agent.play_step(net, epsilon, device=device)
if reward is not None:
total_rewards.append(reward)
speed = (frame_idx - timestep_frame) / (time.time() - timestep)
timestep_frame = frame_idx
timestep = time.time()
mean_reward = np.mean(total_rewards[-100:])
print("{} frames: done {} games, mean reward {}, eps {}, speed {} f/s".format(
frame_idx, len(total_rewards), round(mean_reward, 3), round(epsilon,2), round(speed, 2)))
if not COLAB:
writer.add_scalar("epsilon", epsilon, frame_idx)
writer.add_scalar("speed", speed, frame_idx)
writer.add_scalar("reward_100", mean_reward, frame_idx)
writer.add_scalar("reward", reward, frame_idx)
if best_mean_reward is None or best_mean_reward < mean_reward:
torch.save(net.state_dict(), args.env + "-" + str(len(total_rewards)) + ".dat")
if COLAB:
gsync.update_file_to_folder(args.env + "-" + str(len(total_rewards)) + ".dat")
if best_mean_reward is not None:
print("New best mean reward {} -> {}, model saved".format(round(best_mean_reward, 3), round(mean_reward, 3)))
best_mean_reward = mean_reward
if mean_reward > args.reward and len(total_rewards) > 10:
print("Game solved in {} frames! Average score of {}".format(frame_idx, mean_reward))
break
if len(replay_memory) < LEARNING_STARTS:
continue
if frame_idx % TARGET_UPDATE_FREQ == 0:
target_net.load_state_dict(net.state_dict())
optimizer.zero_grad()
batch = replay_memory.sample(BATCH_SIZE)
loss_t = calculate_loss(batch, net, target_net, device=device)
loss_t.backward()
optimizer.step()
env.close()
if not COLAB:
writer.close()