-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_classifier.r
50 lines (38 loc) · 958 Bytes
/
data_classifier.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
library("sentimentr")
library("dplyr")
f = file("/home/akat/Documents/sentiment-dataset/formatted.txt", "r")
pf = file("/home/akat/Documents/sentiment-dataset/positive.txt", "w")
nf = file("/home/akat/Documents/sentiment-dataset/negative.txt", "w")
nef = file("/home/akat/Documents/sentiment-dataset/neutral.txt", "w")
end = FALSE
result =0
text =""
while(!end){
next_line = trimws(readLines(f,n=1))
if(length(next_line)==0){
end = TRUE
close(f)
close(pf)
close(nf)
close(nef)
}else if(next_line=="<--->"){
#write to individual files
text = paste(text,toString(result),"\n<--->\n",sep = " ")
result = as.integer(result*1000)
if(result > 0){
write(text,pf,append=TRUE)
}else if(result < 0){
write(text,nf,append=TRUE)
}else {
write(text,nef,append=TRUE)
}
result=0
text=""
}else{
sentiment(next_line) %>%
subset(select = "sentiment") %>%
colSums() -> res
result = result + res
text=paste(text,next_line,sep="\n")
}
}