forked from Qiskit/qiskit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathannotated_operation.py
219 lines (172 loc) · 7.87 KB
/
annotated_operation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# This code is part of Qiskit.
#
# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Annotated Operations."""
from __future__ import annotations
import dataclasses
from typing import Union, List
from qiskit.circuit.operation import Operation
from qiskit.circuit._utils import _compute_control_matrix, _ctrl_state_to_int
from qiskit.circuit.exceptions import CircuitError
class Modifier:
"""The base class that all modifiers of :class:`~.AnnotatedOperation` should
inherit from."""
pass
@dataclasses.dataclass
class InverseModifier(Modifier):
"""Inverse modifier: specifies that the operation is inverted."""
pass
@dataclasses.dataclass
class ControlModifier(Modifier):
"""Control modifier: specifies that the operation is controlled by ``num_ctrl_qubits``
and has control state ``ctrl_state``."""
num_ctrl_qubits: int = 0
ctrl_state: Union[int, str, None] = None
def __init__(self, num_ctrl_qubits: int = 0, ctrl_state: Union[int, str, None] = None):
self.num_ctrl_qubits = num_ctrl_qubits
self.ctrl_state = _ctrl_state_to_int(ctrl_state, num_ctrl_qubits)
@dataclasses.dataclass
class PowerModifier(Modifier):
"""Power modifier: specifies that the operation is raised to the power ``power``."""
power: float
class AnnotatedOperation(Operation):
"""Annotated operation."""
def __init__(self, base_op: Operation, modifiers: Union[Modifier, List[Modifier]]):
"""
Create a new AnnotatedOperation.
An "annotated operation" allows to add a list of modifiers to the
"base" operation. For now, the only supported modifiers are of
types :class:`~.InverseModifier`, :class:`~.ControlModifier` and
:class:`~.PowerModifier`.
An annotated operation can be viewed as an extension of
:class:`~.ControlledGate` (which also allows adding control to the
base operation). However, an important difference is that the
circuit definition of an annotated operation is not constructed when
the operation is declared, and instead happens during transpilation,
specifically during the :class:`~.HighLevelSynthesis` transpiler pass.
An annotated operation can be also viewed as a "higher-level"
or "more abstract" object that can be added to a quantum circuit.
This enables writing transpiler optimization passes that make use of
this higher-level representation, for instance removing a gate
that is immediately followed by its inverse.
Args:
base_op: base operation being modified
modifiers: ordered list of modifiers. Supported modifiers include
``InverseModifier``, ``ControlModifier`` and ``PowerModifier``.
Examples::
op1 = AnnotatedOperation(SGate(), [InverseModifier(), ControlModifier(2)])
op2_inner = AnnotatedGate(SGate(), InverseModifier())
op2 = AnnotatedGate(op2_inner, ControlModifier(2))
Both op1 and op2 are semantically equivalent to an ``SGate()`` which is first
inverted and then controlled by 2 qubits.
"""
self.base_op = base_op
self.modifiers = modifiers if isinstance(modifiers, List) else [modifiers]
@property
def name(self):
"""Unique string identifier for operation type."""
return "annotated"
@property
def num_qubits(self):
"""Number of qubits."""
num_ctrl_qubits = 0
for modifier in self.modifiers:
if isinstance(modifier, ControlModifier):
num_ctrl_qubits += modifier.num_ctrl_qubits
return num_ctrl_qubits + self.base_op.num_qubits
@property
def num_clbits(self):
"""Number of classical bits."""
return self.base_op.num_clbits
def __eq__(self, other) -> bool:
"""Checks if two AnnotatedOperations are equal."""
return (
isinstance(other, AnnotatedOperation)
and self.modifiers == other.modifiers
and self.base_op == other.base_op
)
def copy(self) -> "AnnotatedOperation":
"""Return a copy of the :class:`~.AnnotatedOperation`."""
return AnnotatedOperation(base_op=self.base_op, modifiers=self.modifiers.copy())
def to_matrix(self):
"""Return a matrix representation (allowing to construct Operator)."""
from qiskit.quantum_info.operators import Operator # pylint: disable=cyclic-import
operator = Operator(self.base_op)
for modifier in self.modifiers:
if isinstance(modifier, InverseModifier):
operator = operator.power(-1)
elif isinstance(modifier, ControlModifier):
operator = Operator(
_compute_control_matrix(
operator.data, modifier.num_ctrl_qubits, modifier.ctrl_state
)
)
elif isinstance(modifier, PowerModifier):
operator = operator.power(modifier.power)
else:
raise CircuitError(f"Unknown modifier {modifier}.")
return operator
def control(
self,
num_ctrl_qubits: int = 1,
label: str | None = None,
ctrl_state: int | str | None = None,
annotated: bool = True,
) -> AnnotatedOperation:
"""
Return the controlled version of itself.
Implemented as an annotated operation, see :class:`.AnnotatedOperation`.
Args:
num_ctrl_qubits: number of controls to add to gate (default: ``1``)
label: ignored (used for consistency with other control methods)
ctrl_state: The control state in decimal or as a bitstring
(e.g. ``'111'``). If ``None``, use ``2**num_ctrl_qubits-1``.
annotated: ignored (used for consistency with other control methods)
Returns:
Controlled version of the given operation.
"""
# pylint: disable=unused-argument
extended_modifiers = self.modifiers.copy()
extended_modifiers.append(
ControlModifier(num_ctrl_qubits=num_ctrl_qubits, ctrl_state=ctrl_state)
)
return AnnotatedOperation(self.base_op, extended_modifiers)
def _canonicalize_modifiers(modifiers):
"""
Returns the canonical representative of the modifier list. This is possible
since all the modifiers commute; also note that InverseModifier is a special
case of PowerModifier. The current solution is to compute the total number
of control qubits / control state and the total power. The InverseModifier
will be present if total power is negative, whereas the power modifier will
be present only with positive powers different from 1.
"""
power = 1
num_ctrl_qubits = 0
ctrl_state = 0
for modifier in modifiers:
if isinstance(modifier, InverseModifier):
power *= -1
elif isinstance(modifier, ControlModifier):
num_ctrl_qubits += modifier.num_ctrl_qubits
ctrl_state = (ctrl_state << modifier.num_ctrl_qubits) | modifier.ctrl_state
elif isinstance(modifier, PowerModifier):
power *= modifier.power
else:
raise CircuitError(f"Unknown modifier {modifier}.")
canonical_modifiers = []
if power < 0:
canonical_modifiers.append(InverseModifier())
power *= -1
if power != 1:
canonical_modifiers.append(PowerModifier(power))
if num_ctrl_qubits > 0:
canonical_modifiers.append(ControlModifier(num_ctrl_qubits, ctrl_state))
return canonical_modifiers