-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadaptive_attack.py
243 lines (170 loc) · 8.91 KB
/
adaptive_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import math
import random
import numpy as np
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import transforms
import torchvision.transforms.functional as TF
from resnet18_32x32 import ResNet18_32x32
from utils.resnet_factory import SimSiamWithCls
def tensor2variable(x=None, device=None, requires_grad=False):
x = x.to(device)
return Variable(x, requires_grad=requires_grad)
def multi_transform(img, transforms, times=50):
return torch.stack([transforms(img) for t in range(times)], dim=1)
def tar_predict(target_model, samples, labels, device=None):
if type(samples) == np.ndarray:
samples = torch.from_numpy(samples)
else:
labels = labels.detach().cpu().numpy()
samples = samples.to(device)
pred_labels = target_model(samples.float())
pred_labels = torch.max(pred_labels, 1)[1]
pred_labels = pred_labels.cpu().numpy()
acc = (pred_labels == labels.argmax(-1)).sum()/len(labels)
return acc, pred_labels
def ssl_predict(ssl_backbone, ssl_classifier, samples, labels, device=None):
if type(samples) == np.ndarray:
samples = torch.from_numpy(samples)
else:
labels = labels.cpu().detach().numpy()
samples = samples.to(device)
pred_labels = ssl_backbone(samples.float())
pred_labels = ssl_classifier(pred_labels)
pred_labels = torch.max(pred_labels, 1)[1]
acc = (pred_labels.cpu().numpy() == labels.argmax(-1)).sum()/len(labels)
return acc, pred_labels
def ada_attack(target_model, ssl_backbone, ssl_classifer, ssl_projector, criterion, X, y_true, tar_labels, img_transforms=None,
alpha=-1.0, aug_time=50, epsilon=8/256, bound=(0,1), step_size=0.01, num_iter=50, randomize=False, logger=None):
target_model.eval()
ssl_backbone.eval()
ssl_classifer.eval()
ssl_projector.eval()
if randomize:
delta = torch.rand_like(X, requires_grad=True)
delta.data = delta.data * 2 * epsilon - epsilon
else:
delta = torch.zeros_like(X, requires_grad=True)
for t in range(num_iter):
adv_samples = X + delta
trans_samples = multi_transform(adv_samples, img_transforms, aug_time)
tar_loss = criterion(target_model(adv_samples), torch.max(tar_labels, 1)[1])
tar_loss.backward()
tar_grad_data = delta.grad.detach().sign()
delta.grad.zero_()
ori_img_transforms = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
ssl_backbone_outs = ssl_backbone(ori_img_transforms(adv_samples))
# ssl_backbone_outs, _ = ssl_backbone(adv_samples)
ssl_ori_rep = ssl_projector(ssl_backbone_outs)
ssl_ori_out = ssl_classifer(ssl_backbone_outs)
aug_backbone_outs = ssl_backbone(trans_samples.reshape(-1,3,32,32))
aug_reps = ssl_projector(aug_backbone_outs)
aug_outs = ssl_classifer(aug_backbone_outs)
ssl_cls_loss = criterion(aug_outs, torch.max(tar_labels,1)[1].repeat_interleave(aug_time))
# ssl_cls_loss = criterion(ssl_ori_out, torch.max(tar_labels, 1)[1])
ssl_rep_loss = F.cosine_similarity(ssl_ori_rep.unsqueeze(dim=1), aug_reps.reshape(len(adv_samples), aug_time, -1), dim=2).mean()
ssl_loss = ssl_rep_loss * alpha + ssl_cls_loss
ssl_loss.backward()
ssl_grad_data = delta.grad.detach().sign()
delta.data = (delta - step_size*(tar_grad_data+ssl_grad_data)).clamp(-epsilon,epsilon)
delta.data = (X + delta).clamp(*bound) - X
delta.grad.zero_()
return (X + delta).clamp(*bound)
def batch_ada_attack(target_model, ssl_backbone, ssl_classifer, ssl_projector, criterion, samples, labels, tar_labels, img_transforms=None,
aug_time=50, batch_size=100, alpha=-1.0, epsilon=8/256, bound=(0,1), step_size=0.002, num_iter=50, randomize=False, logger=None, device=None):
assert len(samples) == len(labels)
adv_samples = []
number_batch = int(math.ceil(len(samples) / batch_size))
print(f"Start Adaptive Attack, batch num: {number_batch}")
for index in range(number_batch):
start = index * batch_size
end = min((index + 1) * batch_size, len(samples))
# print(f'\r===> in batch {index:>2}, {end-start:>4} ({end:>4} in total) nature examples are perturbed ... ')
batch_images = tensor2variable(torch.from_numpy(samples[start:end]), device, requires_grad=True)
batch_labels = tensor2variable(torch.from_numpy(labels[start:end]).float(), device, requires_grad=True)
batch_tar_labels = tensor2variable(torch.from_numpy(tar_labels[start:end]).float(), device, requires_grad=True)
batch_adv_images = ada_attack(
target_model, ssl_backbone, ssl_classifer, ssl_projector,
criterion, batch_images, batch_labels, batch_tar_labels,
img_transforms=img_transforms, alpha=alpha, aug_time=aug_time, epsilon=epsilon, bound=bound, step_size=step_size, num_iter=num_iter, randomize=randomize, logger=logger
)
adv_samples.extend(batch_adv_images.detach().cpu().numpy())
return np.array(adv_samples)
def main(args):
seed = args.seed
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.cuda.empty_cache()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_index
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
nature_samples = np.load('./AEs/clean_inputs.npy')
labels_samples = np.load('./AEs/clean_labels.npy')
target_labels = np.roll(labels_samples, 1, 1)
img_transforms = transforms.Compose([
transforms.RandomResizedCrop(32, scale=(0.2, 1.)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# ssl model
model = SimSiamWithCls()
model.load_state_dict(torch.load(f"{args.weights_dir}/{args.ssl_model}.pth"))
model.to(device)
model.eval()
backbone = model.backbone
classifier = model.classifier
projector = model.projector
ssl_acc, _ = ssl_predict(backbone, classifier, nature_samples, labels_samples, device)
# target model
target_model = ResNet18_32x32()
target_model.load_state_dict(torch.load(f"{args.weights_dir}/{args.model_name}.pth", map_location='cpu'))
target_model.to(device)
target_model.eval()
tar_acc, _ = tar_predict(target_model, nature_samples, labels_samples, device)
print(f"Model Accuracy: SSL model: {ssl_acc:.2f}, Target model: {tar_acc:.2f}")
criterion = nn.CrossEntropyLoss()
print("Start Attack_________________________")
alpha = args.alpha
step_size = args.step_size
epsilon = args.e
aug_num = args.aug_num
batch_size = args.bs
num_iter = args.num_iter
adv_samples = batch_ada_attack(
target_model, backbone, classifier, projector, criterion,
nature_samples, labels_samples, target_labels, img_transforms, step_size=step_size,
aug_time=aug_num, batch_size=batch_size, alpha=alpha, epsilon=epsilon, num_iter=num_iter, device=device
)
ssl_acc, ssl_adv_labels = ssl_predict(backbone, classifier, adv_samples, labels_samples, device=device)
tar_acc, tar_adv_labels = tar_predict(target_model, adv_samples, labels_samples, device=device)
print(f"Attack Success Rate: SSL model: {1-ssl_acc:.2f} Target model: {1-tar_acc:.2f}")
np.save(f'./AEs/adaptive/Ada_AdvSamples.npy', adv_samples)
np.save(f'./AEs/adaptive/Ada_AdvLabels.npy', tar_adv_labels)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Adaptive Attacks')
parser.add_argument('--seed', type=int, default=100, help='the default random seed for numpy and torch')
parser.add_argument('--gpu_index', type=str, default='0', help="gpu index to use")
parser.add_argument('--weights_dir', type=str, default='./weights', help='the directory to store model weights')
parser.add_argument('--model_name', type=str, default='resnet_c10')
parser.add_argument('--ssl_model', type=str, default='simsiam_c10')
parser.add_argument('--bs', type=int, default=64, help='batch size')
parser.add_argument('--e', type=float, default=8/255., help='perturbation budget')
parser.add_argument('--step_size', type=float, default=0.002, help='step size in PGD')
parser.add_argument('--num_iter', type=int, default=50, help='iteration number in PGD')
parser.add_argument('--aug_num', type=int, default=50, help='number of augmentation')
parser.add_argument('--alpha', type=float, default=-1)
arguments = parser.parse_args()
main(arguments)