-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_resnet18.py
182 lines (124 loc) · 5.77 KB
/
train_resnet18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import copy
import time
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, models, transforms
from resnet18_32x32 import ResNet18_32x32
def train_step(model,features,labels, criterion, optimizer):
model.train()
optimizer.zero_grad()
predictions = model(features)
loss = criterion(predictions,labels)
_, pred_labels = torch.max(predictions, 1)
acc = (pred_labels == labels).float().mean()
loss.backward()
optimizer.step()
return loss.item(),acc.item()
def valid_step(model,features,labels, criterion):
model.eval()
with torch.no_grad():
predictions = model(features)
loss = criterion(predictions,labels)
_, pred_labels = torch.max(predictions, 1)
acc = (pred_labels == labels).float().mean()
return loss.item(), acc.item()
def train_model(model, criterion, dl_train, dl_valid,optimizer, device, num_epochs=200, log_step_freq=100):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
print("Start Training.............")
model.to(device)
for epoch in range(1,num_epochs+1):
print('Epoch {}/{}'.format(epoch, num_epochs))
print('-' * 10)
loss_sum = 0.
acc_sum = 0.
for step, (features,labels) in enumerate(dl_train, 1):
features, labels = features.to(device), labels.to(device)
loss,acc = train_step(model,features,labels, criterion, optimizer)
loss_sum += loss
acc_sum += acc
if step%log_step_freq == 0:
print(f"[step = {step}] loss: {loss_sum/step:.6f}, acc: {acc_sum/step:.4f}")
# scheduler.step()
val_loss_sum = 0.0
val_acc_sum = 0.0
val_step = 1
for val_step, (features,labels) in enumerate(dl_valid, 1):
features, labels = features.to(device), labels.to(device)
val_loss,val_acc = valid_step(model,features,labels,criterion)
val_loss_sum += val_loss
val_acc_sum += val_acc
print(f"\nEPOCH = {epoch}, loss = {loss_sum/step:.6f}, acc = {acc_sum/step:.4f}, \
val_loss = {val_loss_sum/val_step:.6f}, val_acc = {val_acc_sum/val_step:.4f}")
if val_acc_sum/val_step > best_acc:
best_acc = val_acc_sum/val_step
best_model_wts = copy.deepcopy(model.state_dict())
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
return best_model_wts
def main(args):
SEED = args.seed
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_index
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
num_epochs = args.epoch
batch_size = args.bs
learning_rate = args.lr
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor()
])
train_dataset = torchvision.datasets.CIFAR10(root=args.data_dir,
train=True,
transform=transform_train,
download=True)
test_dataset = torchvision.datasets.CIFAR10(root=args.data_dir,
train=False,
transform=transform_test,
download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=args.nw)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=args.nw)
model = ResNet18_32x32()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
best_model_wts = train_model(model, criterion, train_loader, test_loader, optimizer, device, num_epochs)
torch.save(best_model_wts, f"{args.weights_dir}/{args.model_name}.pth")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train ResNet18 on Cifar10')
parser.add_argument('--seed', type=int, default=100, help='the default random seed for numpy and torch')
parser.add_argument('--gpu_index', type=str, default='0', help="gpu index to use")
parser.add_argument('--data_dir', type=str, help='the path of dataset')
parser.add_argument('--weights_dir', type=str, default='./weights/', help='the directory to store model weights')
parser.add_argument('--model_name', type=str, default='resnet_c10')
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--bs', type=int, default=128, help='batch size')
parser.add_argument('--lr', type=float, default=0.01, help='learning rate')
parser.add_argument('--nw', type=int, default=2, help='number of worker')
arguments = parser.parse_args()
main(arguments)
# python train_resnet18.py --data_dir=../../datasets/