-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
149 lines (119 loc) · 5.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import random
import model
import glob
from PIL import Image
from torchvision.transforms import ToTensor
from torch.utils.data import DataLoader
import cv2
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
shape = (24, 24)
validation_ratio = 0.1
lr = 0.001
batch_size = 64
epochs = 12
def resize(image, bbox):
(x,y,w,h) = bbox
eye = image[y:y + h, x:x + w]
return Image.fromarray(cv2.resize(eye, shape))
class DataSetFactory:
def __init__(self):
images = []
labels = []
files = list(map(lambda x: {'file': x, 'label':1}, glob.glob('dataset/dataset_B_Eye_Images/openRightEyes/*.jpg')))
files.extend(list(map(lambda x: {'file': x, 'label':1}, glob.glob('dataset/dataset_B_Eye_Images/openLeftEyes/*.jpg'))))
files.extend(list(map(lambda x: {'file': x, 'label':0}, glob.glob('dataset/dataset_B_Eye_Images/closedLeftEyes/*.jpg'))))
files.extend(list(map(lambda x: {'file': x, 'label':0}, glob.glob('dataset/dataset_B_Eye_Images/closedRightEyes/*.jpg'))))
random.shuffle(files)
for file in files:
img = cv2.imread(file['file'])
images.append(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY))
labels.append(file['label'])
validation_length = int(len(images) * validation_ratio)
validation_images = images[:validation_length]
validation_labels = labels[:validation_length]
images = images[validation_length:]
labels = labels[validation_length:]
print('training size %d : val size %d' % (len(images), len(validation_images)))
train_transform = transforms.Compose([
ToTensor(),
])
val_transform = transforms.Compose([
ToTensor(),
])
self.training = DataSet(transform=train_transform, images=images, labels=labels)
self.validation = DataSet(transform=val_transform, images=validation_images, labels=validation_labels)
class DataSet(torch.utils.data.Dataset):
def __init__(self, transform=None, images=None, labels=None):
self.transform = transform
self.images = images
self.labels = labels
def __getitem__(self, index):
image = self.images[index]
label = self.labels[index]
if self.transform is not None:
image = self.transform(image)
return image, label
def __len__(self):
return len(self.images)
def main():
global batch_size
global epochs
global lr
# ------------------------
factory = DataSetFactory()
training_loader = DataLoader(factory.training, batch_size=batch_size, shuffle=True, num_workers=1)
validation_loader = DataLoader(factory.validation, batch_size=batch_size, shuffle=True, num_workers=1)
network = model.Model(num_classes=2).to(device)
optimizer = torch.optim.Adam(network.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
min_validation_loss = 10000
for epoch in range(epochs):
network.train()
total = 0
correct = 0
total_train_loss = 0
for i, (x_train, y_train) in enumerate(training_loader):
optimizer.zero_grad()
x_train = x_train.to(device)
y_train = y_train.to(device)
y_predicted = network(x_train)
loss = criterion(y_predicted, y_train)
loss.backward()
optimizer.step()
_, predicted = torch.max(y_predicted.data, 1)
total_train_loss += loss.data
total += y_train.size(0)
correct += predicted.eq(y_train.data).sum()
accuracy = 100. * float(correct) / total
print('Epoch [%d/%d] Training Loss: %.4f, Accuracy: %.4f' % (
epoch + 1, epochs, total_train_loss / (i + 1), accuracy))
network.eval()
with torch.no_grad():
total = 0
correct = 0
total_validation_loss = 0
for j, (x_val, y_val) in enumerate(validation_loader):
x_val = x_val.to(device)
y_val = y_val.to(device)
y_val_predicted = network(x_val)
val_loss = criterion(y_val_predicted, y_val)
_, predicted = torch.max(y_val_predicted.data, 1)
total_validation_loss += val_loss.data
total += y_val.size(0)
correct += predicted.eq(y_val.data).sum()
accuracy = 100. * float(correct) / total
if total_validation_loss <= min_validation_loss:
if epoch >= 10:
print('saving new model')
state = {'net': network.state_dict()}
torch.save(state, 'Model/model_%d_%d.t7' % (epoch, batch_size))
min_validation_loss = total_validation_loss
print('Epoch [%d/%d] validation Loss: %.4f, Accuracy: %.4f' % (
epoch + 1, epochs, total_validation_loss / (j + 1), accuracy))
if __name__ == "__main__":
main()